

Using similar triangles, it is relatively easy to demonstrate that:

tangent (abbrev. " <i>tan</i> ")	$\tan\theta = \frac{\sin\theta}{\cos\theta}$
cotangent (abbrev. " <i>cotan</i> " or " <i>cot</i> ")	$\cot\theta = \frac{\cos\theta}{\sin\theta}$
secant (abbrev. " <i>sec</i> ")	$\sec \theta = \frac{1}{\cos \theta}$
cosecant (abbrev. " <i>cosec</i> " or " <i>csc</i> ")	$\csc \theta = \frac{1}{\sin \theta}$

Further, using Pythagoras, we obtain, in addition to $sin^2 \theta + cos^2 \theta = 1$

$$1 + tan^2 \theta = sec^2 \theta \qquad \qquad 1 + cot^2 \theta = csc^2 \theta$$

THE UNIT CIRCLE - sine and cosine

Instead of ratios, in the unit circle, cos and sin are respectively the **x** and **y coordinates** of the intersection of the radius with the circle.

QUADRANTS

RELATIONSHIPS BETWEEN THE RATIOS

By applying Pythagoras theorem to this right-angle triangle, we get:

$$cos^2\theta + sin^2\theta = 1$$

SIN and COS are PERIODIC (PERIOD is 360°)

 $sin(\theta + 360) = sin \theta$ $cos(\theta + 360) = cos \theta$

RELATIONSHIPS BETWEEN TRIGONOMETRIC RATIOS FOR $(-\theta)$, $(180 + \theta)$, $(180 - \theta)$

TRIGONOMETRIC RATIOS - $(-\theta)$

$$sin(-\theta) = -sin \theta$$

$$cos(-\theta) = cos \theta$$

$$tan(-\theta) = \frac{sin(-\theta)}{cos(-\theta)} = \frac{-sin\theta}{cos\theta} = -tan\theta$$

RELATIONSHIPS BETWEEN TRIGONOMETRIC RATIOS FOR COMPLEMENTARY ANGLES

TRIGONOMETRIC RATIOS - (180 - θ) and (180 + θ)

$$sin(180 - \theta) = sin \theta$$

$$cos(180 - \theta) = -cos \theta$$

$$tan(180 - \theta) = \frac{sin(180 - \theta)}{cos(180 - \theta)} = \frac{sin \theta}{-cos \theta} = -tan \theta$$

$$sin(180 + \theta) = -sin \theta$$

$$cos(180 + \theta) = -cos \theta$$

$$tan(180 + \theta) = \frac{sin(180 + \theta)}{cos(180 + \theta)} = \frac{-sin \theta}{-cos \theta} = tan \theta$$