1 Solve for x:

(a)
$$\log_3 x = 3$$

(b)
$$\log_{2} 81 = 2$$

(c)
$$\log_6 x = 3$$

(b)
$$\log_x 81 = 2$$
 (c) $\log_6 x = 3$ (d) $\log_x 343 = 3$

(e)
$$\log_5 x = -3$$

(f)
$$\log_3 81 = x$$

(e)
$$\log_5 x = -3$$
 (f) $\log_3 81 = x$ (g) $\log_x \frac{1}{64} = -3$ (h) $\log_9 x = 0.25$

(h)
$$\log_9 x = 0.25$$

(i)
$$\log_3 27\sqrt{3} = x$$

(j)
$$\log_7 x = 2.5$$

$$(k) \quad \log_2(\log_2 x) = 2$$

(i)
$$\log_3 27\sqrt{3} = x$$
 (j) $\log_7 x = 2.5$ (k) $\log_2(\log_2 x) = 2$ (l) $\log_2 x = \log_2 8 + \log_4 8$

2 Without using a calculator, solve each equation:

(a)
$$\log_{10} x = \log_{10} 4 + \log_{10} 2$$

(b)
$$\log_{10} x = \log_{10} 4 - \log_{10} 2$$

(a)
$$\log_{10} x = \log_{10} 4 + \log_{10} 2$$
 (b) $\log_{10} x = \log_{10} 4 - \log_{10} 2$ (c) $\log_{10} x = \frac{\log_{10} 4}{\log_{10} 2}$

(d)
$$\log_{10} x = \frac{1}{2} \log_{10} \left(\frac{1}{4} \right)$$

(e)
$$2\log_{10}x + 3 = \log_{10}(x^5)$$
 (f) $\log_{10}x^2 = 2$

(f)
$$\log_{10} x^2 = 2$$

4 Solve:

(a)
$$\log_{10} 2 + \log_{10} 5 + \log_{10} x - \log_{10} 3 = 2$$

(b)
$$2\log_{10}x + 3 = 5\log_{10}x$$

(c)
$$\log_{10} 2 + 5\log_{10} x - \log_{10} 5 - \log_{10} (x^3) = \log_{10} 40$$
 (d) $\log_{10} x = 4\log_{10} 2 - 2\log_{10} x$

(d)
$$\log_{10} x = 4\log_{10} 2 - 2\log_{10} x$$

(e)
$$\log_{10} x - \log_{10} (x - 1) = 1$$

(f)
$$\log_{10} x = 2\log_{10} 3 + \log_{10} 5 - \log_{10} 2 - 1$$

5 Solve $2^{-x} = 5$. Indicate whether each statement below is a correct or incorrect step in the solution.

$$(a) \quad x = \frac{\log 5}{\log 2}$$

(b)
$$x = \log_2\left(\frac{1}{5}\right)$$

$$(c) \quad x = \frac{-\log 5}{\log 2}$$

(b)
$$x = \log_2\left(\frac{1}{5}\right)$$
 (c) $x = \frac{-\log 5}{\log 2}$ (d) $x = -2.32$ (2 d.p.)

6 Solve, correct to 3 decimal places:

(a)
$$2^x = 7$$

(b)
$$3^x = 18$$

(c)
$$5^x = 2$$

(d)
$$0.4^x = 2$$

(e)
$$6^x = 21$$

(f)
$$3^{-x} = 0.1$$
 (g) $5^x = 16$

(g)
$$5^x = 16$$

(h)
$$4^x = 5$$

7 Find the values of *x* (to 2 decimal places) for which:

(a)
$$5^x > 2$$

(b)
$$1.6^x \ge 0.5$$

(c)
$$3^x < 0.2$$

(c)
$$3^x < 0.2$$
 (d) $3^{-x} > 27$

8 If $y = a10^{bx}$, then:

$$A \quad x = \log_{10} \frac{y}{ab}$$

$$B \quad x = \frac{1}{b} \log_{10} \frac{y}{a}$$

$$C y = \frac{1}{b} \log_{10} \frac{x}{a}$$

A
$$x = \log_{10} \frac{y}{ab}$$
 B $x = \frac{1}{b} \log_{10} \frac{y}{a}$ **C** $y = \frac{1}{b} \log_{10} \frac{x}{a}$ **D** $x = \frac{1}{a} \log_{10} \frac{y}{b}$

9 If $\log_{10} A = bt + \log_{10} P$, express A in terms of the other symbols.

10 If $\log y = \log a + n \log x$, find an expression for y.

11 If $y = \frac{\log x}{\log 2}$, express x in terms of y.

12 If $x = a^2 \sqrt{b^3 c}$, express $\log x$ in terms of $\log a$, $\log b$ and $\log c$.

13 If $\log x = 0.6$ and $\log y = 0.2$, evaluate $\log \left(\frac{x^2}{\sqrt{y}} \right)$.

14 If $y = ae^{4t}$, express t in terms of a and y.

15 If $\log_b a = p$ and $c = a^2$, find the following in terms of p: (a) $\log_b c$

16 If $\log_a 2 = \log_b 16$, show that $b = a^4$.

- ${\bf 17}~$ \$5000 is invested at 7% p.a. compound interest. How long does it take for this money to:
 - (a) double in value
- (b) grow to \$20000
- (c) grow to \$30000?

18 \$5000 is invested at 6% p.a. compound interest. If the interest is calculated monthly, how long does it take for this money to: (a) double in value (b) grow to \$20000 (c) grow to \$30000? 19 Marika and Joe deposit \$4000 in an account that pays 9% p.a. compound interest, to be withdrawn when it has grown to \$20 000. If the interest is calculated monthly, for how many whole months must they leave the money in the account?