An exponential function is of the form $f(x) = a^x$ where a > 0 and $a \ne 1$

Example 1: $f(x) = 2^x$

We can fill a table of values:

x	-5	-4	-3	-2	-1	-0.5	0	0.5	1	2	3	
у	0.03.	0.06.	0.125	0.25	0.5	0.71	- 1	1.4.	2	4	8	11/1

Example 2: $f(x) = 3^x$

Fill a table of values, then draw the function above

x	-5	-4	-3	-2	-1	-0.5	0	0.5	1	2	3
у	0.004	0.01.	0.04	0.11	0.33	0.58	1	1.7	3	9	27

Example 3: $f(x) = \left(\frac{1}{2}\right)^x$ Fill a table of values, then draw the function above

x	-5	-4	-3	-2	-1	-0.5	0	0.5	1	2	3	
у	32	16	8	4	2	1.4.	. 1	0.71	0.5	0.25	0.12.5	UU

Observations:

- All exponential functions:
 - pass through the point (0,1)
 - have y = 0 as an asymptote.
- For all exponential functions, the domain is R (all real numbers) and the range is R⁺.
- The larger the value of "a", the steeper the curve.
- The value of "a" for which the gradient of the curve at Point (0,1) is exactly 1 is 2.718281828.... This number is named e (from the mathematician Leonhard Euler who studied it extensively). This very special number continues indefinitely and never repeats, so it is an "irrational" number. Like the number π , it is also said to be "transcendental" as it cannot be a solution to a polynomial equation with rational coefficients.

The inverse function of
$$f(x) = e^x$$
 is $f^{-1}(x) = \ln(x)$ so $e^{\ln(x)} = \ln(e^x) = x$

so
$$e^{\ln(x)} = \ln(e^x) = x$$

Because these the functions $f(x) = \ln(x)$ and $g(x) = e^x$ are inverse of each other, their graphs are symmetrical about the line y = x, as shown on the graph below:

Section 6 - Page 2 of 4

On the graph below, graph the functions $f(x) = e^x$ and $g(x) = \ln(x)$.

Note that because the gradient of the graph of $f(x) = e^x$ at the point (0,1) is 1 (by definition of the number e), the gradient of the graph of $f(x) = \ln(x)$ at the point (1,0), i.e. symmetrical of the point (0,1) with regard to the line y = x, is also 1. These gradients have been marked in red on the blank graph below.

On the graph below, graph the function $f(x) = e^{-x}$

The tangent at point (0,1) has been marked in red to assist graphing.

