1 Perform the following long divisions.

(a)
$$(3x^2 - 2x + 5) \div (x - 2)$$

(b)
$$(x^3 - x^2 + x - 1) \div (x - 1)$$

(e)
$$(x^3 - 27) \div (x - 3)$$

(k)
$$(x^3 - 4x^2 + 2x + 3) \div (x^2 - x + 1)$$

5 $P(x) = x^4 - x^3 + px^2 - 4x + q$. Find p and q if P(0) = 3 and P(-1) = 11.

6 $P(x) = ax^3 - 2x^2 + bx + c$. Find a, b and c if P(0) = 12, P(-1) = 3 and P(2) = 36.

7 Using the remainder theorem, find the remainder when:

(a)
$$x^3 + 3x^2 + 2x - 7$$
 is divided by $(x + 2)$

(b)
$$3x^2 + 7x - 2$$
 is divided by $(x - 4)$

10 When the polynomial $x^3 + 3x^2 - mx + n$ is divided by (x + 2) the remainder is 9; when divided by (x - 3) the remainder is 49. Find m and n.

13 When $2x^3 + 7x^2 + ax + b$ is divided by (x - 3) the remainder is 120; when divided by (x + 1) the remainder is -8. Find the values of *a* and *b*.