PARAMETRIC AND CARTESIAN EQUATIONS

The position of any point P, relative to an origin O, is uniquely specified by the vector \overline{OP} , which is termed the position vector of P (relative to O).

Consider a body moving in the $\underline{i} - \underline{j}$ plane so that its position at time, t, is given by the position vector $\underline{r}(t) = (3 - t)\underline{i} + 2t\underline{j}$, $t \ge 0$.

By substituting values of t into r(t), you can determine where the body is at these times.

For example:

t	r(t)	position
0	3į	(3, 0)
0.5	2.5i + j	(2.5, 1)
1	$2\underline{i} + 2\underline{j}$	(2, 2)
2	$\underline{i} + 4\underline{j}$	(1, 4)

The figure on the right shows these four position vectors and the path that the body appears to be taking.

The graph of a vector equation is the set of points determined by $\underline{r}(t)$ as t varies. For $t \ge 0$, r(0) gives us the initial position of the body.

Given that $\underline{r}(0) = 3\underline{i}$, you conclude that the body begins its motion at (3, 0). Substituting increasing values of t into $\underline{r}(t)$ can help you determine the body's direction of motion.

The body starts at (3, 0) and appears to be moving along the line with equation y = 6 - 2x.

In general, when a body moves in space, its position vector varies with time. Having the vector equation of the paths means that you are only working with one variable, *t*, rather than three variables *x*, *y* and *z*.

This is illustrated in the diagram to the right where the position vector is denoted by $\underline{r}(t)$ to indicate its dependence on time, t.

If the coordinates of the variable point P(x, y, z) are expressed parametrically as x = f(t), y = g(t) and z = h(t), then the **vector equation** of the path is given by the position vector $\underline{r}(t) = f(t)\underline{i} + g(t)\underline{j} + h(t)\underline{k}$, where \underline{i} , \underline{j} and \underline{k} are unit vectors in the positive directions of the x-, y- and z-axes respectively.

The equations x = f(t), y = g(t) and z = h(t), are called **parametric equations** and t is called the **parameter**.

In the introductory example, the parametric equations are x = 3 - t and y = 2t.

Rearranging the first equation to make the parameter t the subject gives t = 3 - x.

Substituting t = 3 - x into y = 2t gives y = 2(3 - x) = 6 - 2x.

So, confirming the earlier assertion, y = 6 - 2x is the Cartesian equation that describes the path of the body.

PARAMETRIC AND CARTESIAN EQUATIONS

Example 20

State the vector equation of a curve that has parametric equations given by $x = 2\cos t$, $y = 2\sin t$ and z = 1 for $t \ge 0$.

Solution

The general form is $\underline{r}(t) = x(t)\underline{i} + y(t)j + z(t)\underline{k}$.

The vector equation of the curve is $\underline{r}(t) = (2\cos t)\underline{i} + (2\sin t)\underline{j} + \underline{k}, t \ge 0$.

Example 21

The position vector of a body at time t is given by $\underline{r}(t) = (1 - t)\underline{i} + t^2 \underline{j}$, $t \ge 0$.

- (a) Find the Cartesian equation of the path of the body and state the domain.
- (b) Sketch the path of the body.

Solution

(a) State and number the parametric equations:

$$x = 1 - t \tag{1}$$

[2]

$$y = t^2$$
$$t = 1 - x$$

Express
$$t$$
 in terms of x , from [1]:

If
$$t \ge 0$$
, then $x \le 1$.

$$y = (1 - x)^2$$

$$y = (1 - x)^2, x \le 1.$$

(b) Sketch the parabola with correct domain: The path is that of the parabola $y = (1 - x)^2$ for which $x \le 1$.

To summarise from part (a):

- 1 The parametric equations are x = 1 t and $y = t^2$, $t \ge 0$.
- 2 The Cartesian equation is $y = (1 x)^2$, $x \le 1$.
- 3 The vector equation is $\underline{r}(t) = (1-t)\underline{i} + t^2\underline{j}$, $t \ge 0$.

As shown in Example 21, elimination of the parameter *t* gives the Cartesian equation of the body's path shown in the figure on the right.

The vector equation $\underline{r}(t) = (1-t)\underline{i} + t^2\underline{j}$, $t \ge 0$ is an example of a **vector function of the scalar** (real) variable t because each element in the domain gives a unique value of \underline{r} .

Consequently, the function defined by \underline{r} is a **one-to-one** function.

To specify a vector function, it is sufficient to state its rule and the domain, i.e. $\underline{r}(t) = (1-t)\underline{i} + t^2\underline{j}$, $t \ge 0$.

PARAMETRIC AND CARTESIAN EQUATIONS

Example 22

The parametric equations of a curve are $x = \cos 2t$, $y = \sin t$, $t \ge 0$.

- (a) Find the Cartesian equation of the curve. (b) Find the ve
 - (b) Find the vector equation of the curve.

(c) Sketch the curve.

Solution

(a)
$$x = \cos 2t$$
, $y = \sin t$, $t \ge 0$
 $x = \cos 2t$
 $= 1 - 2\sin^2 t$
 $= 1 - 2y^2$
 $2y^2 = 1 - x$
 $y^2 = \frac{1 - x}{2}$, $-1 \le x \le 1$ is the Cartesian equation of the curve.

- (b) $\underline{r} = x\underline{i} + y\underline{j}$ $\underline{r} = (\cos 2t)\underline{i} + (\sin t)\underline{j}, t \ge 0$ is the vector equation of the curve.
- (c) Since $-1 \le \cos 2t \le 1$ for all t, it follows that $-1 \le x \le 1$ and so the equation represents only the arc *ABC* of the parabola as shown in the diagram.

When
$$t = 0$$
, $x = 1$, $y = 0$ and $y = i$.

When
$$t = \frac{\pi}{2}$$
, $x = -1$, $y = 1$ and $\underline{r} = -\underline{i} + \underline{j}$.

When
$$t = \pi$$
, $x = 1$, $y = 0$ and $\underline{r} = \underline{i}$.

When
$$t = \frac{3\pi}{2}$$
, $x = -1$, $y = -1$ and $\tilde{r} = -\tilde{i} - \tilde{j}$.

From this you can see that if you consider the curve as a path traced out by a moving point, the point starts at B, moves to A, then back to B, then to C and back to B as t increases from 0 to 2π . Since x and y are periodic functions of t, the curve retraces itself as t increases beyond 2π .

