- 1 A trench is being dug by a team of labourers who remove V cubic metres of soil in t minutes, where $V = 10t \frac{t^2}{20}$.
 - (a) State the domain of the function, i.e. the values of t during which soil is being removed.
 - (b) At what rate is the soil being removed at the end of 40 minutes?
 - (c) Are the labourers working at a constant rate?
 - (d) What is their initial rate of work, i.e. when t = 0?
 - (e) At what time are they removing soil at the rate of 5 m³ per minute?
 - a) V(t) is a quadratic function, can ave down, which can only take positive values. So $10t \frac{t^2}{20} > 0 \iff t / 10 \frac{t}{20} > 0$
 - =0 t>0 or $10-\frac{t}{20}>0$ => t<200. So $0 \le t \le 200$.
 - b) $\frac{dV}{dt} = 10 \frac{2t}{20} = 10 \frac{t}{10}$
 - So at t=40 $\frac{dV}{dt}=10-\frac{40}{10}=10-4=\frac{6}{10}$ min
 - c) all is not a constant as it depends of t, so they 're not at working at a constant rate.
 - d) $\frac{dV}{dt} = 10 \frac{t}{10}$ so at t = 0 $\frac{dV}{dt} = \frac{10 0}{10} = \frac{10 \text{ m}^3}{\text{min}}$
 - e) $\frac{dV}{dt} = 5$ when $10 \frac{t}{10} = 5$
 - i.e. when $\frac{t}{10} = 5$ so at t = 50 min.

- 3 A cube of ice has an edge length of 10 cm. It melts so that its volume decreases at a constant rate and the block remains a cube. If the edge length measures 5 cm after 70 minutes, find:
 - (a) the rate at which the volume decreases
- **(b)** the volume at any time *t*.

$$V=a^3$$
 with a the length of the edge.

$$\frac{dV}{dt} = \frac{10^3 - 5^3}{0 - 70} = \frac{1000 - 125}{-70} = -12.5 \text{ cm}^3/\text{min}$$

$$\frac{dV}{dt} = -12.5 \text{ cm}^3/\text{min}$$

Note that the minus sign shows that the volume is decreasing.

$$V(t) = V(0) - 12.5 \times t$$

$$V(0) = 1000 \text{ cm}^3$$

$$m V(t) = 1000 - 12.5 t$$

- **4** A water tank is being emptied. The quantity Q litres of water remaining in the tank at any time t minutes after it starts to empty is given by $Q(t) = 1000(20 t)^2$, $t \ge 0$.
 - (a) At what rate is the tank being emptied at any time t?
 - **(b)** How much time does it take to empty the tank? (When is V = 0?)
 - (c) At what time is the water flowing out at a rate of 20 000 litres per minute?
 - (d) What is the average rate at which the water flows out in the first 5 minutes?

a)
$$Q(t) = 1000 (400 - 40t + t^2)$$

 $Q(t) = 400,000 - 40,000t + 1,000t^2$
 $\frac{dQ}{dt} = -40,000 + 1,000 \times 2t = 2,000t - 40,000$
 $\frac{dQ}{dt} = 2000(t - 20) L min^{-1}$

b)
$$Q=0$$
 when $1000(20-t)^2=0$, i.e when $t=20$ min

(negative as it's deadaring)

a)
$$\frac{dQ}{dt} = -20,000$$
 when $2,000(t-20) = -29,000$

i.e. when $t-20=-10$, i.e. when $t=10$ min

d)
$$\frac{dQ}{dt} = 2,000 t - 40,000$$
 so it's a linear function.

At
$$t=0$$
 $\frac{dQ}{dt}=-40,000$

At
$$L = 5$$
 $\frac{dQ}{dt} = 2,000 \times 5 - 40,000 = -30,000$

So halfway between
$$t=0$$
 and $t=5$ $\frac{dQ=-35,000}{dt}$

The average rate at which water flows out in the first 5 minutes is 35,000 L/min

6 A machine manufactures items at a variable rate given by $\frac{dQ}{dt} = 2t + 1$, $t \ge 0$, where Q is the number of items manufactured in a time t minutes.

At what rate is the machine working: (a) initially

- (b) after 10 minutes?

$$\frac{dQ}{dt} = 2x0 + 1 = 1$$
 item/min

$$\frac{dQ}{dt} = 2 \times 10 + 1 = 21 \text{ item /min}$$

7 If the area of a circle is given by $A = \pi r^2$, show that the rate of change of the area with respect to the radius, $\frac{dA}{dr}$, is proportional to the radius. Find this rate when the radius is 2 cm.

$$A(r) = \pi r^2$$

so
$$\frac{dA}{dr} = \frac{d}{r} \left(\pi r^2 \right) = \pi \frac{dr^2}{dr} = \pi \times 2r$$

So indeed dA is proportional to r

When
$$r=2$$
, $\frac{dA}{dr}=2\pi\times2=4\pi$ cm/unit of time

- 8 A right circular cylinder of volume V has height h and radius of its base r. Find:
 - (a) the rate of change of volume with respect to height, if the radius of the base is constant
 - (b) the rate of change of volume with respect to the radius of the base, if the height is constant,

$$V = \pi r^2 \times h$$

if r is constant
$$\frac{dV}{dh} = \frac{d}{dh} \left(\pi r^2 h \right) = \pi r^2 \frac{dh}{dh} = \pi r^2$$

$$\frac{dV}{dr} = \frac{d}{dr} \left(\pi r^2 h \right) = \pi h \frac{dr^2}{dr} = \pi h 2r$$

So if h is constant
$$\frac{dk}{dr} = 2\pi rh$$

$$\frac{dk}{dr} = 2\pi rh$$

11 The revenue function for a particular manufacturer is $R = x \left(15 - \frac{x}{30} \right)$, where x is the number of units of the product sold. If the marginal revenue is given by $\frac{dR}{dx}$, find the marginal revenue when:

(a) x = 6 (b) x = 15 (c) x = 225

(a)
$$x = 6$$

9 4 . 1 , 316 M

(b)
$$x = 15$$

(c)
$$x = 225$$

$$R = 15x - \frac{\chi^2}{30}$$

$$\frac{dR}{dx} = 15 - \frac{2x}{30} = \frac{15 - x}{15}$$

a) At
$$x = 6$$

a) At
$$\alpha = 6$$
 $\frac{dR}{dx} = 15 - \frac{6}{15} = 14.6$

b) At
$$x = 15$$

b) At
$$x = 15$$
 $\frac{dR}{dx} = 15 - \frac{15}{15} = 15 - 1 = \frac{14}{15}$

c) At
$$t = 225$$

c) At
$$t = 225$$
 $\frac{dR}{dx} = 15 - \frac{225}{15} = 0$