Prove the following identities (questions 1 to 21):

$$1 \frac{\sin A + \cos A \tan B}{\cos A - \sin A \tan B} = \tan (A + B)$$

2
$$\frac{\sin 2\theta \cos \theta - \cos 2\theta \sin \theta}{\cos 2\theta \cos \theta + \sin 2\theta \sin \theta} = \tan \theta$$

$$3 \frac{\tan A - \tan B}{\tan A + \tan B} = \frac{\sin(A - B)}{\sin(A + B)}$$

4
$$\sin(\theta + \alpha)\sin(\theta - \alpha) = \sin^2\theta - \sin^2\alpha$$

Prove the following identities (questions 1 to 21):

9
$$\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} + \frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = 2\sec 2\theta$$
 10 $\frac{1 - \cos x}{\sin x} = \tan\frac{x}{2}$

11
$$\frac{\sin A + \sin(90^{\circ} - A) + 1}{\sin A - \sin(90^{\circ} - A) + 1} = \cot \frac{A}{2}$$

$$10 \frac{1-\cos x}{\sin x} = \tan \frac{x}{2}$$

12
$$\frac{\sin x + 1 - \cos x}{\sin x - 1 + \cos x} = \frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}}$$

14 $\cos(A + B + C) = \cos A \cos B \cos C - \cos A \sin B \sin C - \cos B \sin C \sin A - \cos C \sin A \sin B$ What is the resulting identity if B is replaced by $(90^{\circ} - C)$?

21
$$\frac{1 - \tan \theta \tan 2\theta}{1 + \tan \theta \tan 2\theta} = 4\cos^2 \theta - 3$$

- **22** If $\tan A = \frac{p}{q}$, express the following in terms of *p* and *q*.
 - (a) $q \sin A \cos A + p \sin^2 A$
- (b) $p \sin 2A + q \cos 2A$

23 If A, B and C are the angles of a triangle, prove that $\cos A \cos B - \sin A \sin B + \cos C = 0$.

24 Given that $\sin 18^\circ = \frac{1}{4}(\sqrt{5} - 1)$, find $\cos 36^\circ$ in surd form.

26 Three points P, Q, R are in a horizontal plane. Angles RPQ and RQP are α and β respectively. If PQ is x units in length, show that the perpendicular distance y from R to PQ is given by $y = \frac{x \tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$.

29 If
$$\tan \theta = \frac{3}{5}$$
 and $\pi < \theta < \frac{3\pi}{2}$, find the value of: (a) $\sin \theta$ (b) $\cos \theta$

(a)
$$\sin \theta$$

(b)
$$\cos \theta$$

(c)
$$\cos 2\theta$$

31 If $\csc \alpha = -\frac{17}{8}$ and $\pi < \alpha < \frac{3\pi}{2}$, find the value of: (a) $\cot \alpha$ (b) $\tan 2\alpha$

- 37 (a) By writing expansions for $\sin (A + B)$ and $\sin (A B)$, find a simplified expression for $\sin (A + B) + \sin (A B)$.
 - (b) By writing $\theta = A + B$ and $\phi = A B$, find an expression for $\sin \theta + \sin \phi$ as the product of two trigonometric functions.

38 If $\sec \theta - \tan \theta = \frac{3}{5}$, show that $\sin \theta = \frac{8}{17}$. (Hint: Use *t* formulae.)

39 If $4\tan(\alpha - \beta) = 3\tan\alpha$, prove that $\tan\beta = \frac{\sin 2\alpha}{7 + \cos 2\alpha}$.

40 Use the factors of $x^3 - y^3$ to show that $\cos^6 \theta - \sin^6 \theta = \left(1 - \frac{1}{4}\sin^2 2\theta\right)\cos 2\theta$.

41 If $\tan \theta = t$, express $\sin 2\theta$ and $\cos 2\theta$ in terms of t. Find the values of t for which $(k+1)\sin 2\theta + (k-1)\cos 2\theta = k+1$.

44 If $\tan \alpha = k \tan \beta$, show that $(k-1)\sin(\alpha+\beta) = (k+1)\sin(\alpha-\beta)$.