5	Find the volume of the solid generated when the part of the curve rotated about the x-axis.	$y = \frac{1}{\sqrt{1 - \frac{1}{1 - \frac{1}$	between $x = -1$ and $x = 1$ is
	rotated about the x-axis.	$\sqrt{4-x}$	2

- **7** The diagram shows the graph of $y = \ln x$.
 - (a) Find $\int_1^t \ln x \, dx$.
 - (b) By comparing relevant areas in the diagram, or otherwise, show that $\ln t > 2\left(\frac{t-1}{t+1}\right)$, for t > 1.

10 The diagram shows the graph of $xy^2 = (x-2)^2(4-x)$. Find the volume of the solid formed by rotating the loop in the graph of $xy^2 = (x-2)^2(4-x)$ about the *x*-axis.

11 (a) The region bounded by the curves $y = \sin x$, $y = \cos x$ and the *y*-axis is rotated about the *x*-axis. Calculate the volume of the solid of revolution formed.

12	When the circle $x^2 + y^2 = a^2$ is rotated about the line $x = b$ ($b > a$) to generate a torus, the volume of the solid of
	revolution formed is given by $V = 4\pi \int_{-a}^{a} (b-x) \sqrt{a^2 - x^2} dx$. Calculate this volume.

14 Find the particular solution of $\frac{dy}{dx} = x^2 \sin x + 2x \cos x - 2 \sin x$, given that y = 6 when x = 0.

15 Find the particular solution of $\frac{dy}{dx} = e^{-x} \sin x$, given that $y = -\frac{1}{2}$ when x = 0.

- 19 (a) The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is rotated about the x-axis. Show that the volume of the solid generated is $\frac{1}{3} 4\pi ab^3$ cubic units.
 - (b) When the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is rotated about the line x = a, the volume of the solid of revolution is given by $V = 2\pi \int_{-a}^{a} 2y(a-x) dx$. Calculate the volume of this solid of revolution.

- 22 (a) Let $I_n = \int_1^2 (\log_e x)^n dx$ where n is a positive integer. Show that $I_n = 2(\log_e 2)^n nI_{n-1}$.
 - (b) Let $f(x) = (\log_e x)^n$ where integer $n \ge 2$. By considering the first and second derivatives, show that f(x) is increasing and concave up over the domain $1 < x \le 2$. Sketch the curve $y = (\log_e x)^n$ (where $n \ge 2$) over the domain $1 \le x \le 2$.
 - (c) By considering the area of a triangle that acts as an upper bound, show that: $nI_{n-1} > \frac{3}{2} (\log_e 2)^n$.
 - (d) Hence show that $\frac{2}{3} < \log_e 2 < 2$.

26 The base of a solid is formed by the area bounded by $y = \sin x$ and $y = -\sin x$ for $0 < x < \frac{\pi}{2}$ and the line $x = \frac{\pi}{2}$. Vertical cross-sections of the solid taken parallel to the y-axis are isosceles triangles with equal sides of length 1 unit, as shown. The volume of this solid is given by $V = \int_0^{\frac{\pi}{2}} y \sqrt{1 - y^2} \, dx$ where $y = \sin x$. Calculate the exact volume of this solid.

