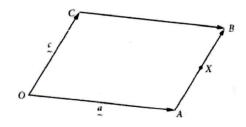

- 1 If vector \underline{a} is represented by the ordered pair (2, -6), specify an ordered pair for each of the following vectors.
 - (a) 3a
- (b) $\frac{1}{2}a$
- (c) -a
- (d) 0.4a

- 2 If vector \underline{b} is represented by the column vector $\begin{pmatrix} -4 \\ 5 \end{pmatrix}$, specify a column vector for each of the following vectors.
 - (a) -2b
- **(b)** 5b
- (c) $\frac{1}{3}b$
- (d) $-\frac{5}{4}b$

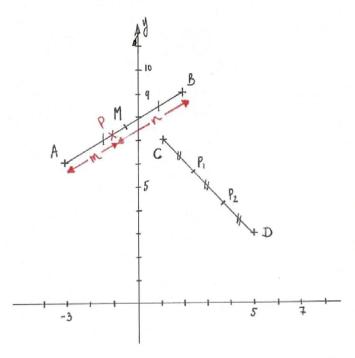
- 4 If c is the position vector of (6, -3), represent each of the vectors as a column vector.
 - (a) -c
- **(b)** 2c
- (c) $-\frac{1}{3}c$
- (**d**) 1.5*c*

- Represent 5
 Menu resent each of the vectors in the plane shown as an ordered pair.
 - (a) a
- (c) c

- (d) d
- (e) e
- f


- 8 Which of the following represents the vector from the point (2, 6) to the point (-1, 8)?

- 10 Draw the following vectors on the Cartesian plane.
 - (a) a, the position vector of $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ (b) b, the position vector of $\begin{pmatrix} -2 \\ 2 \end{pmatrix}$ (c) c, the position vector of $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$ (d) \overrightarrow{OD} , where D is $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ (e) \overrightarrow{OE} , where E is $\begin{pmatrix} 0 \\ -5 \end{pmatrix}$ (f) \overrightarrow{OF} , where F is $\begin{pmatrix} -2 \\ -5 \end{pmatrix}$


- 12 The points A, B and C have coordinates (-2, -3), (2, 3) and (8, -1) respectively.
 - (a) Find the vectors \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{AC} and express them in column vector form.
 - **(b)** Find $|\overrightarrow{AB}|$, $|\overrightarrow{BC}|$ and $|\overrightarrow{AC}|$.
 - (c) Use Pythagoras' theorem to prove that ΔABC is a right-angled triangle.
 - (d) Find the coordinates of a point D such that ABCD forms a square.
 - (e) Find the coordinates of the point of intersection of the diagonals of the square ABCD.

13 *OABC* is a parallelogram with $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OC} = \underline{c}$. X is the midpoint of \overrightarrow{AB} as shown.

- (a) Find the vectors \overrightarrow{OB} and \overrightarrow{OX} in terms of \underline{a} and \underline{c} .
- **(b)** Find the vector \overrightarrow{CX} in terms of a and c.
- (c) If Y is a point on \overrightarrow{CX} , such that $\overrightarrow{CY} = \frac{2}{3}\overrightarrow{CX}$, find \overrightarrow{CY} in terms of \underline{a} and \underline{c} .
- (d) Find \overrightarrow{OY} and hence show that Y lies on \overrightarrow{OB} .
- (e) Find the ratio $\overline{OY} : \overline{YB}$.

- **14 a)** The coordinates of points A and B are respectively (-3,6) and (2,9). Find the position vector of the midpoint M of \overline{AB} .
- **b)** The coordinates of points C and D are respectively (1, 7) and (5, 3). Find the position vectors of the points P_1 and P_2 trisecting \overline{CD} in three equal parts.
- c) Let the position vectors of A and B be respectively \overrightarrow{a} and \overrightarrow{b} . Let P be a point which divides \overline{AB} in the ratio m: n, so that $\frac{\overline{AP}}{\overline{AB}} = \frac{m}{m+n}$. Show that the position vector of point P is $\frac{n}{m+n}\overrightarrow{a} + \frac{m}{m+n}\overrightarrow{b}$.

