RECURRENCE RELATIONS

Integration by parts can also be used to find a recurrence relation that will allow the evaluation of an integral. Given $I_n = \int_a^b [f(x)]^n dx$, you find a relationship of the form $I_n = kI_{n-1}$, where $I_{n-1} = \int_a^b [f(x)]^{n-1} dx$. After I_1 or another of the other easy I integrals can be found, the recurrence relation is then used to evaluate the original integral.

Example 29

Find the recurrence relation for $\int \cos^n x \, dx$ and use it to evaluate: $\int_0^{\frac{\pi}{2}} \cos^4 x \, dx$

Let
$$I_n = \int \cos^n x \, dx$$
 and write $\cos^n x = \cos^{n-1} x \times \cos x$:

$$I_n = \int \cos^{n-1} x \cos x \, dx$$

Let $u = \cos^{n-1} x$, $\frac{dv}{dx} = \cos x$. This gives $\frac{du}{dx} = (n-1)\cos^{n-2} x \times (-\sin x)$, $v = \sin x$.

Hence:
$$I_n = \int \cos^n x \, dx = \cos^{n-1} x \times \sin x + (n-1) \int \sin^2 x \cos^{n-2} x \, dx$$

$$I_n = \cos^{n-1} x \sin x + (n-1) \int (1 - \cos^2 x) \cos^{n-2} x \, dx$$

$$I_n = \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x \, dx - (n-1) \int \cos^n x \, dx$$

$$I_n = \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x \, dx - (n-1) I_n$$

$$(1 + n - 1) I_n = \cos^{n-1} x \sin x + (n-1) I_{n-2}$$

$$nI_n = \cos^{n-1} x \sin x + (n-1) I_{n-2}$$

$$I_n = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} I_{n-2}$$
This relation between I_n and I_{n-2} is a recurrence relation.

To find
$$\int_0^{\frac{\pi}{2}} \cos^4 x \, dx$$
, write: $I_4 = \int_0^{\frac{\pi}{2}} \cos^4 x \, dx$

From the recurrence relation for
$$n = 4$$
, we have:
$$I_4 = \left[\frac{\cos^3 x \sin x}{4}\right]_0^{\frac{\pi}{2}} + \frac{3}{4}I_2 = \frac{3}{4}I_2$$

and
$$I_2 = \left[\frac{\cos x \sin x}{2}\right]_0^{\frac{\pi}{2}} + \frac{1}{2}I_0 = 0 + \frac{1}{2}\int_0^{\frac{\pi}{2}} dx$$

Thus:
$$I_2 = \frac{1}{2} [x]_0^{\frac{\pi}{2}} = \frac{\pi}{4}$$
 and so $I_4 = \frac{3}{4} I_2 = \frac{3}{4} \times \frac{\pi}{4} = \frac{3\pi}{16}$
Hence: $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^4 x \, dx = \frac{3\pi}{16}$

RECURRENCE RELATIONS

Example 30

(a) Let $I_n = \int_0^x \tan^n t \, dt$ where $0 \le x < \frac{\pi}{2}$. Show that: $I_n = \frac{1}{n-1} \tan^{n-1} x - I_{n-2}$

(b) Hence find the exact value of: $\int_0^{\frac{\pi}{4}} \tan^5 t \, dt$

Solution

(a) Write $\tan^n t = \tan^2 t \times \tan^{n-2} t = (\sec^2 t - 1) \tan^{n-2} t$. Thus:

$$\begin{split} I_n &= \int_0^x \tan^n t \, dt = \int_0^x (\sec^2 t - 1) \tan^{n-2} t \, dt \\ &= \int_0^x \sec^2 t \, \tan^{n-2} t \, dt - \int_0^x \tan^{n-2} t \, dt \\ &= \int_0^x \sec^2 t \, \tan^{n-2} t \, dt - I_{n-2} \end{split}$$

Now consider: $\int_0^x \sec^2 t \, \tan^{n-2} t \, dt$

It is tempting to try integration by parts here, but using the substitution $u = \tan t$ is much easier. Let $u = \tan t$ so that $du = \sec^2 t \, dt$. Limits are t = 0: u = 0 t = x: $u = \tan x$

$$\therefore \int_0^x \sec^2 t \tan^{n-2} t \, dt = \int_0^{\tan x} u^{n-2} \, du$$
$$= \left[\frac{u^{n-1}}{n-1} \right]_0^{\tan x}$$
$$= \frac{1}{n-1} \tan^{n-1} x$$

Thus: $I_n = \frac{1}{n-1} \tan^{n-1} x - I_{n-2}$

(b)
$$I_5 = \int_0^{\frac{\pi}{4}} \tan^5 t \, dt$$
 $\therefore I_5 = \frac{1}{4} \left[\tan^4 x \right]_0^{\frac{\pi}{4}} - I_3 = \frac{1}{4} - I_3$

and
$$I_3 = \frac{1}{2} \left[\tan^2 x \right]_0^{\frac{\pi}{4}} - I_1 = \frac{1}{2} - I_1$$

Now:
$$I_1 = \int_0^{\frac{\pi}{4}} \tan t \, dt = - \left[\log_e(\cos t) \right]_0^{\frac{\pi}{4}} = - \left(\log_e \left(\frac{1}{\sqrt{2}} \right) - \log_e 1 \right) = \frac{1}{2} \log_e 2$$

Hence:
$$I_3 = \frac{1}{2} - \frac{1}{2}\log_e 2$$
 and $I_5 = \frac{1}{4} - \left(\frac{1}{2} - \frac{1}{2}\log_e 2\right) = \frac{1}{2}\log_e 2 - \frac{1}{4}$

This gives:
$$\int_0^{\frac{\pi}{4}} \tan^5 t \, dt = \frac{1}{2} \log_e 2 - \frac{1}{4}$$

RECURRENCE RELATIONS

Example 31

Obtain a recurrence relation for $\int e^{ax} \cos bx \, dx$ and use it to find $\int e^{3x} \cos 4x \, dx$.

(This example is just outside the scope of this course, but it is worth looking at as a demonstration of just how useful this process can be.)

Solution

Write:
$$I = \int e^{ax} \cos bx \, dx$$

Let
$$u = e^{ax}$$
, $\frac{dv}{dx} = \cos bx$. This gives $\frac{du}{dx} = ae^{ax}$, $v = \frac{1}{b}\sin bx$.

$$\therefore I = \int e^{ax} \cos bx \, dx = \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \int e^{ax} \sin bx \, dx$$

Now write:
$$H = \int e^{ax} \sin bx \, dx$$

Let
$$u = e^{ax}$$
, $\frac{dv}{dx} = \sin bx$. This gives $\frac{du}{dx} = ae^{ax}$, $v = -\frac{1}{b}\cos bx$.

$$\therefore H = \int e^{ax} \sin bx \, dx = -\frac{1}{b} e^{ax} \cos bx + \frac{a}{b} \int e^{ax} \cos bx \, dx$$

Substitute this expression for H into the expression for I:

$$I = \int e^{ax} \cos bx \, dx = \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \left(-\frac{1}{b} e^{ax} \cos bx + \frac{a}{b} \int e^{ax} \cos bx \, dx \right)$$

$$I = \frac{1}{b}e^{ax}\sin bx + \frac{a}{b^2}e^{ax}\cos bx - \frac{a^2}{b^2}I$$

$$\left(1 + \frac{a^2}{b^2}\right)I = \frac{1}{b}e^{ax}\sin bx + \frac{a}{b^2}e^{ax}\cos bx$$

$$I = \int e^{ax} \cos bx \, dx = \frac{b^2}{b^2 + a^2} \left(\frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cos bx \right) + C$$
$$= \frac{e^{ax}}{b^2 + a^2} (b \sin bx + a \cos bx) + C$$

In
$$\int e^{3x} \cos 4x \, dx$$
 you have $a = 3$ and $b = 4$, thus: $\int e^{3x} \cos 4x \, dx = \frac{e^{3x}}{25} (4 \sin 4x + 3 \cos 4x) + C$