1 Find the equations of the tangent and normal to the curve $y = x^2$ at (2, 4).

2 Find the equations of the tangent and normal to the curve $y = 3x - x^2$ at (0,0).

5 Find the equations of the tangent and normal to the curve $y = 2x^2 - 4x + 1$ where the gradient is 4.

6 Find the equations of the tangent and normal to the curve $y = \frac{1}{x}$ at the point where x = -2. Indicate whether each statement below is a correct or incorrect step in answering this question.

(a)
$$\frac{dy}{dx} = \frac{1}{x^2}$$

(b) At
$$\left(-2, -\frac{1}{2}\right)$$
, $\frac{dy}{dx} = -\frac{1}{4}$

(c) Equation of tangent is
$$x + 4y + 4 = 0$$

(d) Equation of normal is
$$8x - 2y + 15 = 0$$

8 Find the equations of the tangent and normal to the curve $y = 3x^3 - 7x^2 + 2x$ at the point where x = 2.

9 The straight line y = x + 2 cuts the parabola $y = \frac{x^2}{2} - 2$ at two points *P* and *Q*. Find the coordinates of *P* and *Q*. Also find the equations of the tangents to the parabola at *P* and *Q* and the coordinates of the point of intersection of these tangents.

11	Find the equations of the tangent and normal to the parabola $y = 2x^2 - 4x + 1$ at the point of zero gradient.

13	The line $y = x + 4$ cuts the parabola $y = x^2 - 2x$ at two points A and B . Find the size of the angles that the tangents to the curve at A and B make with the x -axis.		

18	The line $y = x - 2$ cuts the curve $y = x^3(x - 2)$ at two points A and B . Calculate the angles that the tangents to the curve at A and B make with the x -axis and hence find the angle between the tangents.		

- **20** Find the coordinates of the points on the curve $y = x^2(2x 3)$ at which the tangent is parallel to:
 - (a) the line y = 12x 1
- **(b)** the *x*-axis.