- 1 If z = 1 + 2i and w = -3 4i, find the following in x + iy form:
 - (a) 3z + w
- **(b)** z^2
- (c) $w\overline{w}$
- (d) $\frac{z}{w}$ (e) the square roots of w.

- **6** (a) Evaluate the following, giving answers in both mod-arg form and x + iy form.
 - (i) $(\sqrt{3}-i)^3$
- (ii) $\frac{(1-\sqrt{3}i)^2}{(1+i)^3}$
- (b) Use your answer to part (a)(ii) to show that $\cos \frac{7\pi}{12} = \frac{\sqrt{2} \sqrt{6}}{4}$.

7 If
$$z = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$$
 and $w = \cos \left(-\frac{3\pi}{10}\right) + i \sin \left(-\frac{3\pi}{10}\right)$, find $\frac{z^2}{w^5}$ in mod-arg form.

8 Describe each of the following regions of the Argand diagram algebraically.

(a)

(b)

(c)

10 Find $(1 + i\sqrt{2})^3$

- 11 If $z = \cos \theta + i \sin \theta$:

 - (a) Show that $\arg(z^2 + z^4) = 3\theta$. (b) Show that $z^2 + z^4 = 2\cos\theta(\cos 3\theta + i\sin 3\theta)$. (c) Find the value(s) of θ for which $z^2 + z^4$ is purely imaginary, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

- **13** (a) If w is a root of $z^{12} = i$, show that -w is also a root.
 - **(b)** Let z_1 and z_2 be two distinct roots of $z^{12} = i$. Show that $|z_1 + z_2| < 2$.

15 On an Argand diagram, point Z is shown to represent the complex number z. Which diagram below shows the vector that represents (1 - i)z?

A Image

- **16** On an Argand diagram, the points *A*, *B*, *C* and *D* represent the complex numbers α , β , γ and δ respectively.
 - (a) Describe the point that represents $\frac{1}{2}(\alpha + \gamma)$. (b) If $\alpha + \gamma = \beta + \delta$, deduce that *ABCD* is a parallelogram.

- 18 On an Argand diagram, the points A and C represent the complex numbers 3i and 4-5i respectively. ABCD is a rhombus.
 - (a) Find the Cartesian equation of the diagonal *BD*.
 - **(b)** Show that the diagonal *BD* is also represented by the equation $(1+2i)z + (1-2i)\overline{z} 8 = 0$.

- **19** If *w* is a non-real root of the equation $z^5 = 1$, show that:
- (a) $1 + w + w^2 + w^3 + w^4 = 0$ (b) $(1 w)(1 w^2)(1 w^3)(1 w^4) = 5$ (c) $z_1 = w + w^4$ and $z_2 = w^2 + w^3$ are the roots of the quadratic equation $z^2 + z 1 = 0$.

- (a) Find the cube roots of -8 in mod-arg form.
 (b) If w₁ and w₂ are the non-real roots of -8, show that w₁⁶ⁿ + w₂⁶ⁿ = 2⁶ⁿ⁺¹ for all integers n.

- **21** On an Argand diagram, A represents the complex number $z = \cos \theta + i \sin \theta$. B represents wz, where On an Argand diagram, A represent $w = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$. M is the midpoint of OB. (a) Show that $\overline{AM} = \frac{1}{2}wz - z$. (b) Show that $\left|\frac{1}{2}wz - z\right| = \sqrt{2 - \sqrt{2}}$.
- (c) Show that $\arg\left(\frac{1}{2}wz z\right) = \frac{5\pi}{8} + \theta$.

- **24** (a) Given that $\tan 3\theta = \frac{3\tan \theta \tan^3 \theta}{1 3\tan^2 \theta}$ (see Example 17, page 16), solve $x^3 3\sqrt{3}x^2 3x + \sqrt{3} = 0$.
 - **(b)** Show that $\tan \frac{\pi}{9} \tan \frac{2\pi}{9} + \tan \frac{4\pi}{9} = 3\sqrt{3}$.

	COMI LLA NOMBLIG - CHAI TER REVIEW
30	The polynomial $P(x) = ax^3 + bx + c$ has a multiple zero at $x = 2$ and has a remainder of 20 when divided by $x + 2$. Find a , b and c .