TRIGONOMETRIC IDENTITIES AND PROOFS

Because the equation of the unit circle is:

of the unit circle is:
$$x^2 + y^2 = 1$$

$$x = \cos \theta, y = \sin \theta$$

$$\cos^2\theta + \sin^2\theta = 1$$

$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\cos^2 \theta = 1 - \sin^2 \theta$$
$$\sin^2 \theta = 1 - \cos^2 \theta$$

Dividing [1] by
$$\cos^2 \theta$$
:

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\theta$$
 [2]

[1]

[3]

Dividing [1] by
$$\sin^2 \theta$$
:

$$\cot^2\theta + 1 = \csc^2\theta$$

Statements [1], [2] and [3] are called identities as they are true for all values of θ .

Example 11

If $\sin \theta = \frac{3}{5}$ and $\frac{\pi}{2} < \theta < \pi$, find the exact values of $\cos \theta$ and $\tan \theta$.

Solution

$$\cos^2\theta + \sin^2\theta = 1$$

$$\sin \theta = \frac{3}{5}$$

$$\sin\theta = \frac{3}{5}: \qquad \cos^2\theta + \frac{9}{25} = 1$$

$$\cos^2\theta = \frac{16}{25}$$

So: $\cos \theta = \pm \frac{4}{5}$; because it is given that $\frac{\pi}{2} < \theta < \pi$, we have $\cos \theta = -\frac{4}{5}$

$$\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{\frac{3}{5}}{-\frac{4}{5}}$$

$$\tan \theta = -\frac{3}{4}$$

Alternatively: in a right-angled triangle with a side length of 3 and a hypotenuse length of 5, you can calculate that the third side length is 4. You also know from $\frac{\pi}{2} < \theta < \pi$ that the angle is in the second quadrant, so the x value will be negative. Hence from $\sin \theta = \frac{3}{5}$ you can obtain $\cos \theta = -\frac{4}{5}$ and $\tan \theta = -\frac{3}{4}$.

Example 12

Simplify:

(a)
$$\frac{1-\cos^2\theta}{1-\sin^2\theta}$$

(b)
$$1 + \tan^2(\frac{\pi}{2} - \theta)$$

(a)
$$\frac{1-\cos^2\theta}{1-\sin^2\theta}$$
 (b) $1+\tan^2(\frac{\pi}{2}-\theta)$ (c) $\sqrt{a^2+x^2}$, for $x=a\tan\theta$ and $0<\theta<\frac{\pi}{2}$

Solution

(a)
$$\frac{1 - \cos^2 \theta}{1 - \sin^2 \theta}$$
$$= \frac{\sin^2 \theta}{\cos^2 \theta}$$
$$= \tan^2 \theta$$

(b)
$$1 + \tan^2(\frac{\pi}{2} - \theta)$$
 (c) $\sqrt{a^2 + x^2}$
= $1 + \cot^2 \theta$ = $\sqrt{a^2 + a^2}$

(c)
$$\sqrt{a^2 + x^2}$$

$$= \sqrt{a^2 + a^2 \tan^2 \theta}$$

$$= \sqrt{a^2 (1 + \tan^2 \theta)}$$

$$= \sqrt{a^2 \sec^2 \theta}$$

$$= a \sec \theta$$

TRIGONOMETRIC IDENTITIES AND PROOFS

Example 13

Prove the following identities.

(a)
$$\frac{1-\sin^2\theta}{\sin^2\theta+\cos^2\theta}=\cos^2\theta$$
 (b) $\frac{\cos\theta}{1-\sin\theta}-\tan\theta=\sec\theta$ (c) $\tan\theta\sin\theta+\cos\theta=\sec\theta$

=RHS

(b)
$$\frac{\cos \theta}{1 - \sin \theta} - \tan \theta = \sec \theta$$

(c)
$$\tan \theta \sin \theta + \cos \theta = \sec \theta$$

Solution

(a) LHS =
$$\frac{1 - \sin^2 \theta}{\sin^2 \theta + \cos^2 \theta}$$
 Use $\cos^2 \theta = 1 - \sin^2 \theta$ and $\sin^2 \theta + \cos^2 \theta = 1$
= $\frac{\cos^2 \theta}{1}$
= $\cos^2 \theta$
= RHS

(b) LHS =
$$\frac{\cos \theta}{1 - \sin \theta} - \tan \theta$$
 Replace $\tan \theta$ with $\frac{\sin \theta}{\cos \theta}$

= $\frac{\cos \theta}{1 - \sin \theta} - \frac{\sin \theta}{\cos \theta}$ Find common denominator

= $\frac{\cos^2 \theta - \sin \theta (1 - \sin \theta)}{(1 - \sin \theta) \cos \theta}$ Expand

= $\frac{\cos^2 \theta - \sin \theta + \sin^2 \theta}{(1 - \sin \theta) \cos \theta}$ Use $\sin^2 \theta + \cos^2 \theta = 1$

= $\frac{1 - \sin \theta}{(1 - \sin \theta) \cos \theta}$ Cancel common factor

= $\frac{1}{\cos \theta}$ for $\sin \theta \neq 1$

(c) LHS =
$$\tan \theta \sin \theta + \cos \theta$$

= $\frac{\sin \theta}{\cos \theta} \times \sin \theta + \cos \theta$ Replace $\tan \theta$ with $\frac{\sin \theta}{\cos \theta}$
= $\frac{\sin^2 \theta}{\cos \theta} + \frac{\cos \theta}{1}$ Find common denominator
= $\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta}$
= $\frac{1}{\cos \theta}$ Use $\sin^2 \theta + \cos^2 \theta = 1$
= $\sec \theta$
= RHS