1 Express each vector shown in component form.

(f)
$$f$$

2 Find the magnitude of the following vectors.

(a)
$$a = 5i + 4j$$
 (b) $-4i + 7j$ (c) $7i - 24j$ (d) $-5i$

(b)
$$-4i + 7j$$

(c)
$$7i - 24j$$

(d)
$$-5i$$

- 3 Resolve the following vectors into component form $x_i + y_j$, correct to two decimal places.
 - (a) a has a magnitude of 15 units and has a direction of 35° to the positive x-axis.
 - (b) b has a magnitude of 23 units and has a direction of 121° to the positive x-axis.
- 4 Given $\underline{a} = 4\underline{i} 5\underline{j}$ and $\underline{b} = 3\underline{i} + 2\underline{j}$, find: (a) $\underline{a} + \underline{b}$ (b) $\underline{b} \underline{a}$ (c) $2\underline{a} + 7\underline{b}$

(a)
$$a + b$$

(b)
$$b - a$$

(c)
$$2a+7b$$

6 Find the values of the unknown pronumerals in the following equations.

(a)
$$5i - 4j = 3ai + 2bj$$

(b)
$$(x+2y)\underline{i} + y\underline{j} = -3\underline{i} + 7\underline{j}$$

(e)
$$(x^2 + 5x)\underline{i} + (y^3 - 1)\underline{j} = -6\underline{i} + 7\underline{j}$$

- **10** Given $\underline{a} = -13\underline{i} + 20\underline{j}$ and $\underline{b} = 2\underline{i} + 15\underline{j}$, find:
 - (a) |a-b|
- (b) the value of x so that the vector $x\underline{a} + 4\underline{b}$ is parallel to the x-axis.

- 12 Which one of the following vectors is parallel to the vector $\underline{f} = 14\underline{i} 6\underline{j}$?
 - $\mathbf{A} \qquad \underline{a} = 28\underline{i} + 12\underline{j}$

- B b = 14i + 6j C c = -14i 6j D d = -28i + 12j

- 16 For b = 3i 9j:
 - (a) find \hat{b}
- (b) find vector \underline{c} in the direction of \underline{b} with a magnitude of 15.

19 What is the unit vector in the direction of a = -2i + 5j is?

$$A = \frac{1}{7} \left(-2i + 5i \right)$$

$$\mathsf{B} = \frac{1}{29} \left(-2\underline{i} + 5\underline{j} \right)$$

$$\mathbf{C} = \frac{1}{\sqrt{29}} \left(-2i + 5j \right)$$

A
$$\frac{1}{7}(-2i+5i)$$
 B $\frac{1}{29}(-2i+5j)$ C $\frac{1}{\sqrt{29}}(-2i+5j)$ D $\frac{1}{\sqrt{21}}(-2i+5j)$

- 23 $\triangle OAB$ is a triangle in which $\overrightarrow{OA} = 6i$ and $\overrightarrow{OB} = 4j$. The point M with position vector $\overrightarrow{OM} = xi + yj$ is equidistant from O, A and B.
 - (a) Find the values of x and y.
- **(b)** Find the vectors \overrightarrow{AM} , \overrightarrow{MB} and \overrightarrow{OM} .
- (c) Find the values of $|\overrightarrow{AM}|$, $|\overrightarrow{MB}|$ and $|\overrightarrow{OM}|$.

- 24 OABC is a parallelogram in which vectors $\overrightarrow{OA} = 2\underline{i} 4\underline{j}$ and $\overrightarrow{OC} = 3\underline{i} + 2\underline{j}$.

 (a) Find vectors \overrightarrow{AB} and \overrightarrow{CB} .

 (b) Find the vectors \overrightarrow{OB} and \overrightarrow{AC} , the diagonals of the parallelogram.
 - (c) Find the vectors \$\overline{OP}\$ and \$\overline{OQ}\$, where \$P\$ is the midpoint of \$\overline{OB}\$ and \$Q\$ is the midpoint of \$\overline{AC}\$. What can you say about the points \$P\$ and \$Q\$?
 (d) Find the vectors \$\overline{OR}\$ and \$\overline{CR}\$, where \$R\$ is the midpoint of \$\overline{AB}\$.

- 25 \overrightarrow{OABC} is a square in which vectors $\overrightarrow{OA} = 3\underline{i} 2\underline{j}$ and $\overrightarrow{OC} = 2\underline{i} + 3\underline{j}$. M is the midpoint of \overrightarrow{AB} and N divides \overrightarrow{CB} internally in the ratio 1:2.
 - (a) Find the vectors \overrightarrow{OB} , \overrightarrow{AC} , \overrightarrow{OM} , \overrightarrow{ON} and \overrightarrow{NB} . (b) Find the length of the diagonals, $|\overrightarrow{OB}|$ and $|\overrightarrow{AC}|$.

- 27 (a) If $\underline{a} = 3p\underline{i} + 4p\underline{j}$, p > 0 and $|\underline{a}| = 2$, find the exact value of p. (b) Hence find $\hat{\underline{a}}$.
 - (c) Find the vector \underline{b} which is parallel to \hat{a} , if $|\underline{b}| = 10$.
 - (d) If $\underline{c} = 7q\underline{i} + 24q\underline{j}$, q > 0, and $|\underline{c}| = 4$, find the exact value of q. (e) Hence find \hat{c} .
 - (f) Find the vector \underline{d} in the direction of \hat{c} where $|\underline{d}| = 50$.
 - (g) Find the vector with magnitude 10 that is parallel to the vector b + d.