USING ARRAYS FOR TWO-STEPS EXPERIMENTS

A table called an array may be used to list the sample space of a two-steps experiment.

Example: in a basket containing a blue, red and green ball, picking a ball at random, put it back, then picking another one.

	Blue	Red	Green	
Blue	(Blue,Blue)	(Blue,Red)	(Blue, Green)	
Red	(Red,Blue)	(Red,Red)	(Red,Green)	
Green	(Green,Blue)	(Green,Red)	(Green, Green)	

ARRAY - WITH REPLACEMENT

<u>If replacement is allowed</u>, then outcomes from each selection can be repeated.

Example: two selections are made from digits $\{1, 2, 3\}$ If replacement is allowed, the possible outcomes are:

		1st			
		1	2	3	
2nd	1	(1,1)	(2,1)	(3, 1)	
	2	(1,2)	(2, 2)	(3, 2)	
	3	(1,3)	(2, 1) (2, 2) (2, 3)	(3, 3)	

ARRAY - WITHOUT REPLACEMENT

If replacement is NOT allowed, the possible outcomes are:

		1st			
_		1	2	3	
2nd	1	×	(2, 1)	(3, 1)	
	2	(1, 2)	×	(3, 2)	
	3	(1, 3)	(2, 3)	×	

A fair 6-sided die is rolled twice. List the sample space, using a table.

b State the total number of outcomes.

Find the probability of obtaining the outcome (1, 5).

Find:

P(double) Find the probability of a sum of 12, given that the sum is at least 10.

a

Roll 2
 1
 2
 3
 4
 5
 6

 1
 (1, 1)
 (1, 2)
 (1, 3)
 (1, 4)
 (1, 5)
 (1, 6)

c $P(1, 5) = \frac{1}{36}$ d i $P(\text{double}) = \frac{6}{36}$ iii $P(\text{sum of at least } 10) = \frac{6}{36} = \frac{1}{6}$ iii $P(\text{sum not equal to } 7) = 1 - \frac{6}{36}$ iii $P(\text{sum not equal to } 7) = 1 - \frac{6}{36}$

P(sum of at least 10)iii P(sum not equal to 7)

PRODUCT RULE for INDEPENDENT EVENTS

If A and B are two independent events, then the probability that the event A will occur, followed by event B, is given by:

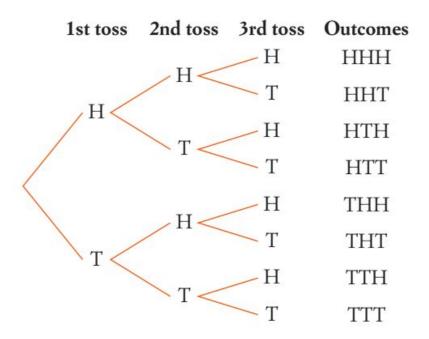
$$P(AB) = P(A) \times P(B)$$

- P(A) is the probability that event A will occur.
- P(B) is the probability that event B will occur.
- P(AB) is the probability that events A and B will occur in that order.

TREE DIAGRAMS

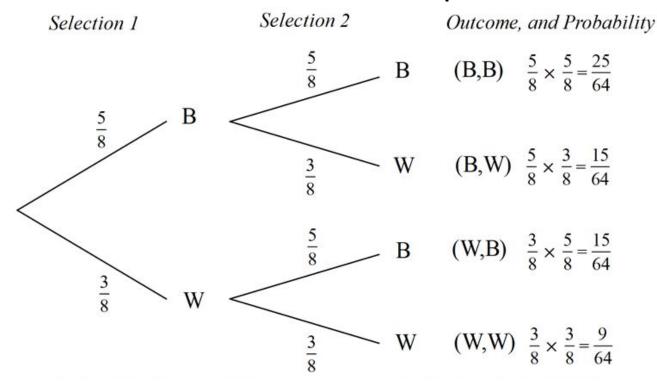
A tree diagram is a systematic way of listing all the possible outcomes in a multi-stage event.

This tree diagram shows the possible outcomes when a coin is tossed three times:



TREE DIAGRAM - WITH REPLACEMENT

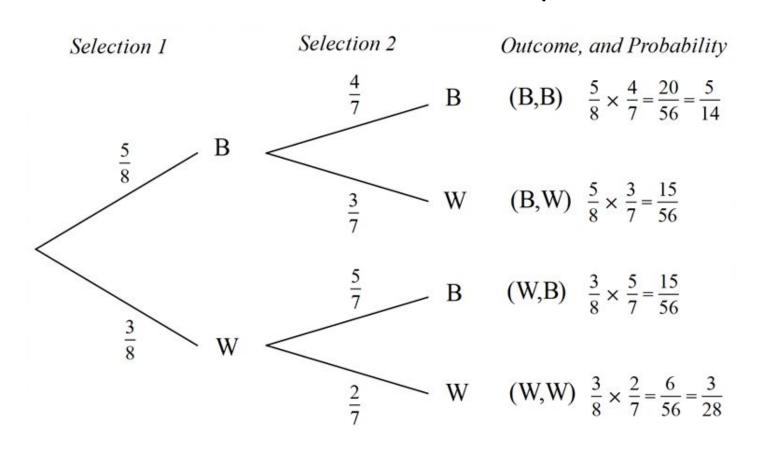
A bag contains 8 marbles: 5 blue (B) and 3 white (W). Two marbles are selected WITH replacement.



Each outcome for the experiment is obtained by multiplying the branch probabilities.

TREE DIAGRAM - WITHOUT REPLACEMENT

A bag contains 8 marbles: 5 blue (B) and 3 white (W). Two marbles are selected WITHOUT replacement.



TREE DIAGRAMS

For two-stage events, such as rolling two dice, a table is more convenient than a tree diagram for listing the sample space. example:

Two dice are rolled and their sum is calculated.

- Use a table to list all possible sums.
- **b** What is the probability of rolling a sum of 10?

b There are 36 possible outcomes.

$$P(\text{sum of } 10) = \frac{3}{36}$$

= $\frac{1}{12}$

		2nd die					
	+	1	2	3	4	5	6
1st die	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
	3	4	5	6	7	8	9
	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12