THE UNIFORM DISTRIBUTION

A discrete probability distribution is said to be **uniform** if all values of the random variable are equally likely.

$$P(X = x_i) = \begin{cases} \frac{1}{n} \text{ when } 1 \le i \le n \\ 0 \text{ elsewhere} \end{cases}$$

A common example of a uniform distribution is the random variable, *X*, that is the value of the face showing when a normal, six-sided die is rolled.

$$P(X = x) = \begin{cases} \frac{1}{6} & \text{if } x \in \{1, 2, 3, 4, 5, 6\} \\ 0 & \text{for all other values of } x \end{cases}$$
The graph of this distribution is shown on the right:
The expected value is: $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6}$

$$= \frac{21}{6}$$

$$= 3\frac{1}{2}$$

This can also be determined from the symmetry of the graph of the distribution. The variance of the distribution is given by $Var(X) = E(X^2) - [E(X)]^2$:

(

$$Var(X) = \frac{1}{6}(1+4+9+16+25+36) - \left(\frac{7}{2}\right)^2$$
$$= \frac{35}{12}$$

Expected value of a uniform discrete probability distribution

$$E(X) = \sum_{i=1}^{n} x_i P(X = x_i) = \sum_{i=1}^{n} x_i \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

If the values of x_i range from 1 to n, the expected value is:

$$E(X) = \sum_{i=1}^{n} i P(X = x_i) = \sum_{i=1}^{n} i \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} [1 + 2 + 3 + \dots + (n-1) + n]$$

see demonstration below¹

But: $1 + 2 + 3 + \dots + (n - 1) + n = \frac{n(n+1)}{2}$

Therefore:
$$E(X) = \frac{1}{n} \times \frac{n(n+1)}{2}$$

$$E(X) = \frac{n+1}{2}$$

¹ Let S be the sum of the first n positive integers. $S = 1 + 2 + 3 + \dots + (n - 1) + n$ We can also write S in descending order: $S = n + (n - 1) + \dots + 3 + 2 + 1$ We add both expressions of S; we can see that each term pairs with the next and each of these sums is (n + 1).

Therefore:
$$2S = \underbrace{(n+1) + (n+1) + \dots + (n+1) + (n+1)}_{n \text{ times}} = n(n+1)$$
 i.e. $2S = n(n+1)$ Hence $S = \frac{n(n+1)}{2}$

THE UNIFORM DISTRIBUTION

Variance of a uniform discrete probability distribution:

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$E(X^{2}) = \sum_{i=1}^{n} x_{i}^{2} P(X = x_{i}) = \sum_{i=1}^{n} x_{i}^{2} \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$$
If the values of x_{i} range from 1 to n , $E(X^{2})$ is equal to:
$$E(X^{2}) = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$
It can be demonstrated² that $\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$
Therefore in that case, $E(X^{2}) = \frac{1}{n} \times \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6}$

$$Var(X) = \frac{(n+1)(2n+1)}{6} - \left(\frac{n+1}{2}\right)^{2} = \frac{(n+1)}{2} \left[\frac{(2n+1)}{3} - \frac{(n+1)}{2}\right]$$

$$Var(X) = \frac{(n+1)}{2} \left[\frac{2(2n+1) - 3(n+1)}{6}\right] = \frac{(n+1)(n-1)}{2} = \frac{n^{2} - 1}{12}$$

² Let S be the sum of the squares of the first n positive integers. $A_n = 1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = \sum_{i=1}^n i^2$		
for $n = 1$	$A_1 = 1^2 = 1$	
for $n = 2$	$A_2 = 1^2 + 2^2 = 1 + 4 = 5$	
for $n = 3$	$A_3 = 1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14$	
for $n = 4$	$A_4 = 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30$	
It seems that:	$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ This indeed is true for $n = 1, n = 2, n = 3$ and $n = 4$, as:	
for $n = 1$	$\frac{1(1+1)(2\times1+1)}{6} = \frac{1\times2\times3}{6} = \frac{6}{6} = 1$	
	6 6 6 6	
for $n = 2$	$\frac{2(2+1)(2\times2+1)}{6} = \frac{2\times3\times5}{6} = \frac{30}{6} = 5$	
for $n = 3$	$\frac{3(3+1)(2\times3+1)}{6} = \frac{3\times4\times7}{6} = \frac{84}{6} = 14$	
for $n = 4$	$\frac{4(4+1)(2\times4+1)}{4\times5\times9} - \frac{180}{10} - 30$	
	$\frac{4(4+1)(2\times4+1)}{6} = \frac{4\times5\times9}{6} = \frac{180}{6} = 30$	

We demonstrate this formula by the method of <u>mathematical induction</u>: we assume it is true for n, and we demonstrate that the formula holds for (n + 1).

$$A_n = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$A_{n+1} = A_n + (n+1)^2 = \sum_{i=1}^n i^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$A_{n+1} = \frac{(n+1)[n(2n+1) + 6(n+1)]}{6} = \frac{(n+1)[2n^2 + n + 6n + 6]}{6} = \frac{(n+1)[2n^2 + 7n + 6]}{6}$$
Factorising the 2nd term, we obtain: $2n^2 + 7n + 6 = (n+2)(2n+3) = (n+2)[2(n+1) + 1]$ therefore:

$$A_{n+1} = \frac{(n+1)(n+2)[2(n+1) + 1]}{6}$$

So if it is true for A_n , then it is also true for A_{n+1} . As it is true for A_1 , we conclude that it must be true for A_2 , so it must be true for A_3 , so it must be true for A_4 , so it must be true for A_5 , and so on. So it must be true for any n.

THE UNIFORM DISTRIBUTION

Example 13

A roulette wheel in the United States usually has 38 equal-sized spaces showing the numbers 1 to 36 as well as 0 and 00. When the wheel is spun, a ball will land in one of the 38 spaces at random. For this question assume that 0 and 00 represent the 37th and 38th possible outcomes.

- (a) Find the mean of the number of the space the ball lands in.
- (b) Find the variance of the number of the space the ball lands in.

Solution

(a) Use the rule for $E(X)$:	(b) Use the rule for Var (X):
$E(X) = \frac{n+1}{2}$	$\operatorname{Var}(X) = \frac{n^2 - 1}{12}$
$=\frac{38+1}{2}$	$=\frac{38^2-1}{12}$
$=\frac{39}{2}$	$=\frac{1443}{12}$
$=19\frac{1}{2}$	$= 120\frac{1}{4}$

This section has focused on uniform distributions where the values of x are 1 to n. However, it is still quite easy to find the expected value and variance for other uniform distributions where the values the distribution takes are consecutive numbers.

This is because such a distribution is a lateral shift of the uniform distribution where *x* takes the values 1 to *n*, so the rules E(X + b) = E(X) + b and Var(X + b) = Var(X) can be applied.