
1 The diagram shows the graphs of y = |x+2| and $y = \sqrt{4-x^2}$. The solution of $\sqrt{4-x^2} \le |x+2|$ is:

B
$$-2 \le x \le 0$$

C
$$x = -2, 0 \le x \le 2$$

D
$$x \ge 0$$

2 Solve the following inequalities.

(a)
$$\frac{2}{1-x} > 1$$

(a)
$$\frac{2}{1-x} > 1$$
 (b) $\frac{1}{x+3} \le \frac{2}{x}$

3 Sketch the region of the Cartesian plane bounded by curves $y = \frac{1}{x}$, x = 1, x = 3 and the *x*-axis.

4 Sketch the region of the Cartesian plane that satisfies $y \ge x^2 - 1$ and $y \le 1 - |x|$.

5 Sketch the region of the Cartesian plane bounded by the curves $y \ge x^2 - 4$ and $y \le 4 - x^2$.

6 Show that the straight lines 2x + y = 20 and x + y = 14 intersect at (6, 8). Hence sketch the region of the Cartesian plane for which $y \ge 20 - 2x$, $y \le 14 - x$ and $y \ge 0$ are all true.

7 Sketch the region in the number plane defined by $(x-1)^2 + (y-1)^2 < 1$ and x > 1.

8 Sketch the region of the Cartesian plane bounded by the curves $y = x^2 - 4$ and y = |x| + 1.