1 Show that if $a \ge 0$ and $b \ge 0$ then $ab(a^2 + b^2) \ge 2a^2b^2$.

2 If 0 < x < y, prove that $x^2 < xy < y^2$.

- **3** (a) For positive x and y, prove that $\frac{x}{y} + \frac{y}{x} \ge 2$.
- **(b)** Hence prove that $x^2 xy + y^2 \ge xy$.
- (c) Factorise $x^3 + y^3$ and show that $x^3 + y^3 \ge xyz\left(\frac{x}{z} + \frac{y}{z}\right)$ for x, y, z > 0.
- (d) Write similar expressions for $y^3 + z^3$ and $z^3 + x^3$.
- (e) Using results from parts (c) and (d), prove that $x^3 + y^3 + z^3 \ge 3xyz$.
- **(f)** If *a*, *b*, *c*, *d* are positive, deduce that:

(i)
$$a+b+c \ge 3\sqrt[3]{abc}$$

(ii)
$$(a+b+c)(a+b+d)(a+c+d)(b+c+d) \ge 81abcd$$

- **4** (a) Show that $a^2 + b^2 + c^2 \ge ab + bc + ca$ for real a, b, c.
 - **(b)** Hence show that $(a + b + c)^2 \ge 3(ab + bc + ca)$.

- **6** (a) Prove that $\frac{a+b}{2} \ge \sqrt{ab}$. Hence prove that $\frac{a+b+c+d}{4} \ge \sqrt[4]{abcd}$ for positive a, b, c, d.
 - **(b)** Let $d = \frac{a+b+c}{3}$. Show that $abc \le \left(\frac{a+b+c}{3}\right)^3$.

- 8 If x > 0 and y > 0, prove that:
- (a) $\frac{1}{x} + \frac{1}{y} \ge \frac{4}{x+y}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} \ge \frac{8}{(x+y)^2}$

- 9 (a) If a and b are real numbers, prove that 4a² 6ab + 4b² ≥ a² + b².
 (b) Write the binomial expansion of (a b)⁴ and prove that a⁴ + b⁴ ≥ a³b + ab³ if a > 0 and b > 0.

14 The area of a triangle is given by Heron's formula as $A = \sqrt{s(s-a)(s-b)(s-c)}$ where a, b and c are the lengths of the sides and $s = \frac{1}{2}(a+b+c)$. Given that $\sqrt{ab} \le \frac{a+b}{2}$ and $ab+bc+ca \le a^2+b^2+c^2$, show that: $A \le \frac{a^2+b^2+c^2}{6}$.

- 17 Let $g(x) = \sin x x$.
 - (a) Show that g(0) = 0 and g'(0) = 0.
 - (c) Hence explain why $g(x) \le 0$ for $x \ge 0$.
- **(b)** Show that $-2 \le g'(x) \le 0$ for all x.
- (d) Explain why $\sin x < x$ for x > 0.

19 By letting $a = \frac{1}{x}$ and $b = \frac{1}{y}$ in $\frac{a+b}{2} \ge \sqrt{ab}$, prove that:

(a)
$$\frac{1}{x} + \frac{1}{y} \ge \frac{2}{\sqrt{xy}}$$
 (b) $\frac{1}{x^2} + \frac{1}{y^2} \ge \frac{2}{xy}$

(b)
$$\frac{1}{x^2} + \frac{1}{v^2} \ge \frac{2}{xy}$$

20 If $1 \le x \le 4$, show that: $\frac{1}{3} \le \frac{1}{1 + \sqrt{x}} \le \frac{1}{2}$