THE DISTRIBUTIVE LAW

The distributive law can be used with surds to expand expressions with a binomial factor:

$$a(b+c) = ab + ac$$

Example 19

Expand and simplify:

(a)
$$\sqrt{6}(\sqrt{2}+2\sqrt{3})$$

(b)
$$(\sqrt{3} + \sqrt{2})(\sqrt{5} + \sqrt{6})$$

(a)
$$\sqrt{6}(\sqrt{2}+2\sqrt{3})$$
 (b) $(\sqrt{3}+\sqrt{2})(\sqrt{5}+\sqrt{6})$ (c) $(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})$ (d) $(\sqrt{5}+\sqrt{3})(\sqrt{5}+\sqrt{3})$

(d)
$$(\sqrt{5} + \sqrt{3})(\sqrt{5} + \sqrt{3})$$

Solution

(a)
$$\sqrt{6}(\sqrt{2} + 2\sqrt{3})$$

 $= \sqrt{6} \times \sqrt{2} + \sqrt{6} \times 2\sqrt{3}$
 $= \sqrt{12} + 2\sqrt{18}$
 $= 2\sqrt{3} + 6\sqrt{2}$

(b)
$$(\sqrt{3} + \sqrt{2})(\sqrt{5} + \sqrt{6})$$

= $\sqrt{3}(\sqrt{5} + \sqrt{6}) + \sqrt{2}(\sqrt{5} + \sqrt{6})$
= $\sqrt{15} + 3\sqrt{2} + \sqrt{10} + 2\sqrt{3}$

(c)
$$(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})$$

= $(\sqrt{5})^2 - (\sqrt{3})^2$
= $5 - 3$
= 2
This is similar to $(a - b)(a + b) = a^2 - b^2$.

(d)
$$(\sqrt{5} + \sqrt{3})(\sqrt{5} + \sqrt{3})$$

= $\sqrt{5}(\sqrt{5} + \sqrt{3}) + \sqrt{3}(\sqrt{5} + \sqrt{3})$
= $5 + 2\sqrt{15} + 3$
= $8 + 2\sqrt{15}$
This is similar to $(a + b)^2 = a^2 + 2ab + b^2$.