
Part A: Exact values of trigonometric ratios for 45°

Consider the isosceles triangle:

a) If the length of both equal sides is a, use Pythagoras theorem to find the length of the hypotenuse x

$$x^{2} = a^{2} + a^{2} = 2a^{2}$$
So
$$x = \sqrt{2} a$$

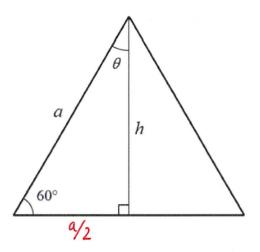
b) Show that $\theta = 45^{\circ}$.

$$20 + 90 = 180 \quad \text{so} \quad 20 = 90 \quad \text{...} \quad 0 = 45^{\circ}$$

c) Show that $\sin 45 = \frac{1}{\sqrt{2}}$ (which, once rationalised, is equal to $\frac{\sqrt{2}}{2}$)

$$\sin 45 = \frac{a}{x} = \frac{1}{12a} = \frac{1}{12} = \frac{52}{2}$$

d) Show that $\cos 45 = \frac{1}{\sqrt{2}}$ (which, once rationalised, is equal to $\frac{\sqrt{2}}{2}$)


$$\cos 45 = \frac{a}{x} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

e) Show that tan 45 = 1

$$\tan 45 = \frac{\sin 45}{\cos 45} = \frac{\sqrt{2}/2}{\sqrt{2}} = 1$$

Part B: Exact values of trigonometric ratios for 30° and 60°

Consider the equilateral triangle:

a) Show that $\theta = 30^{\circ}$

$$90+9+60 = 180$$

b) If the length of each side is a, use Pythagoras theorem to find the length of the height h

$$h^{2} + \left(\frac{a}{2}\right)^{2} = a^{2} \qquad \therefore \quad h^{2} + \frac{a^{2}}{4} = a^{2} \qquad \therefore \quad k^{2} = a^{2} - \frac{a^{2}}{4}$$

$$h^{2} = \frac{3a^{2}}{4} \qquad \therefore \qquad k = \sqrt{3} \quad a$$

c) Using SOHCAHTOA, show that
$$\sin 30 = \frac{1}{2}$$
 and that $\cos 30 = \frac{\sqrt{3}}{2}$

$$\cos 30 = \frac{h}{a} = \frac{\sqrt{3}}{2}$$

$$\cos 30 = \frac{h}{a} = \frac{\sqrt{3}}{2}$$

d) Likewise, show that $\sin 60 = \frac{\sqrt{3}}{2}$ and that $\cos 60 = \frac{1}{2}$

$$\sin 60 = \frac{R}{a} = \frac{\sqrt{3}}{2}$$
 $\cos 60 = \frac{\sqrt{2}}{a} = \frac{1}{2}$

e) Using results from c) and d) above, find the exact values of tan 30 and of tan 60

$$\tan 30 = \frac{\sin 30}{\cos 30} = \frac{1/2}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\tan 60 = \frac{\sin 60}{\cos 60} = \frac{\sqrt{3}/2}{\sqrt{2}} = \sqrt{3}$$

$$\tan 60 = \frac{\sin 60}{\cos 60} = \frac{\sqrt{3}/2}{\sqrt{2}} = \sqrt{3}$$