Mathematical induction is a method to prove a statement containing integers, for example the statement:

$$1 + 2 + 3 + \dots + (n - 1) + n = \frac{n(n + 1)}{2}$$

A proof by induction consists of a **three-step process**, the final step being a conclusion:

Step 1: Prove that the statement is true for the smallest possible value of *n*

in the example above, for
$$n=2$$
, we have indeed $1+2=\frac{2(2+1)}{2}$

Step 2: Prove that if the statement is true for n = k, then it must also be true for the next value n = k + 1

in the example above, we assume that the statement is true for n = k, i.e.:

$$1 + 2 + 3 + \dots + (k - 1) + k = \frac{k(k + 1)}{2}$$

In that case:

$$1 + 2 + 3 + \dots + (k - 1) + k + (k + 1) = \frac{k(k + 1)}{2} + (k + 1)$$
$$1 + 2 + 3 + \dots + (k - 1) + k + (k + 1) = \frac{k(k + 1) + 2(k + 1)}{2}$$
$$1 + 2 + 3 + \dots + (k - 1) + k + (k + 1) = \frac{(k + 1)(k + 2)}{2}$$

which is the same formula than the original statement.

Step 3: Write a conclusion, such as:

- The statement is true for n = k + 1 if it is true for n = k
- The statement is true for the smallest possible value of *n*
- Therefore the statement is true for all possible values of *n*

For the example above, we would say:

- The statement $1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}$ is true for n=k+1 if it is true for n=k
- The statement is true for the smallest possible value of n=2
- Therefore the statement is true for all possible values of *n*

Example 1

Prove that $1 + 3 + 5 + ... + (2n - 1) = n^2$ for all integers $n \ge 1$.

Solution

Step 1 Prove that the statement is true for n = 1.

When
$$n = 1$$
: LHS = 1 RHS = $1^2 = 1$

LHS = RHS \therefore the statement is true for n = 1

Step 2 Assume the statement is true for n = k, where k is any integer greater than or equal to 1.

i.e. assume that
$$1 + 3 + 5 + ... + (2k - 1) = k^2$$
 [a]

Now prove that the statement will be true for n = k + 1 if it is true for n = k.

i.e. prove that
$$1+3+5+...+(2[k+1]-1)=(k+1)^2$$

LHS =
$$1 + 3 + 5 + \dots + (2[k+1] - 1)$$

= $1 + 3 + 5 + \dots + (2k-1) + (2[k+1] - 1)$

using [a]: $= k^2 + (2k + 1)$

(You can only prove this is true when n = k + 1 if it is true when n = k.)

$$= (k+1)^2$$
$$= RHS$$

Step 3 Conclusion

The statement is true for n = k + 1 if it is true for n = k (Step 2)

The statement is true for n = 1 (Step 1)

 \therefore by induction, the statement is true for all integers $n \ge 1$.

Example 2

Prove by induction that $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$ for all positive integers n.

Solution

Let S(n) be the statement that $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$, where n is a positive integer. Step 1 Prove that S(1) is true.

LHS =
$$1^2 = 1$$
 RHS = $\frac{1(1+1)(2\times1+1)}{6} = \frac{1(2)(3)}{6} = 1$
LHS = RHS \therefore S(1) is true

Step 2 Assume S(k) is true for a positive integer k.

i.e. assume that
$$[1^2 + 2^2 + 3^2 + ... + k^2] = \frac{k(k+1)(2k+1)}{6}$$
 [a]

Now, prove that S(k + 1) is true if S(k) is true.

i.e. prove that
$$1^{2} + 2^{2} + 3^{2} + \dots + (k+1)^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$LHS = \underbrace{1^{2} + 2^{2} + 3^{2} + \dots + k^{2}}_{6} + (k+1)^{2}$$
using [a]:
$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

Now look at the RHS: you want $\frac{(k+1)}{6}$ as a factor.

LHS =
$$\frac{(k+1)}{6} (k(2k+1)+6(k+1))$$

= $\frac{(k+1)}{6} (2k^2+7k+6)$
= $\frac{(k+1)(k+2)(2k+3)}{6}$ = RHS

Step 3 Conclusion

$$S(k + 1)$$
 is true if $S(k)$ is true (Step 2)

∴ by induction, S(n) is true for all integers $n \ge 1$.

Example 3

Prove by induction that $n + (n + 1) + (n + 2) + ... + 2n = \frac{3n(n+1)}{2}$ for all integers $n \ge 1$.

Solution

Let S(n) be the statement that $n + (n+1) + (n+2) + ... + 2n = \frac{3n(n+1)}{2}$ for positive integer n. Step 1 Prove that S(1) is true.

LHS = $1 + (2 \times 1)$ (Note that the sum on the LHS starts with n and finishes with 2n.)

RHS =
$$\frac{3 \times 1(1+1)}{2}$$
 = 3
LHS = RHS \therefore S(1) is true

Step 2 Assume S(k) is true for an integer $k \ge 1$.

i.e. assume that
$$[k+(k+1)+(k+2)+...+2k] = \frac{3k(k+1)}{2}$$
 [a]

Now prove that S(k + 1) is true if S(k) is true.

i.e. prove that
$$(k+1) + (k+2) + ... + 2(k+1) = \frac{3(k+1)((k+1)+1)}{2}$$

Note that when n = k + 1, the sum on the LHS starts with (k + 1) and finishes with 2(k + 1).

LHS =
$$(k + 1) + (k + 2) + ... + 2k + (2k + 1) + (2k + 2)$$

Now you have a problem! At this point you need to use the substitution of line [a], but you are missing the first term (the k). In going from S(k) to S(k+1) you have lost the first term but gained two extra terms on the LHS. The solution is to break up the extra two terms (2k+1)+(2k+2) as a k term and a (3k+3) term.

LHS =
$$k + (k+1) + (k+2) + ... + 2k + (3k+3)$$

using [a]: = $\frac{3k(k+1)}{2} + 3(k+1)$
= $\frac{3(k+1)}{2}[k+2]$ taking the common factor of $\frac{3(k+1)}{2}$
= RHS

Step 3 Conclusion

$$S(k+1)$$
 is true if $S(k)$ is true (Step 2)
 $S(1)$ is true (Step 1)

 \therefore by induction, S(n) is true for all integers $n \ge 1$.