1 (a) Differentiate $\sin x \cos^{n-1} x$ with respect to x to show that if $I_n = \int \cos^n x \, dx$, then: $I_n = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} I_{n-2}$

(i)
$$\int_0^{\frac{\pi}{2}} \cos^6 x \, dx$$

(b) Hence evaluate: (i)
$$\int_{0}^{\frac{\pi}{2}} \cos^{6} x \, dx$$
 (iii) $\int_{0}^{\frac{\pi}{2}} \cos^{4} x \sin^{2} x \, dx$

2 Show that $\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx$ and hence find: $\int x^3 e^x dx$

- (a) Find the derivative of xⁿ log_e x.
 (b) Hence find (correct to three decimal places) the value of:
 (i) ∫₁² x² log_e x dx
 (ii) ∫₁² x³ log_e x dx

(i)
$$\int_{1}^{2} x^{2} \log_{e} x \, dx$$

(ii)
$$\int_{1}^{2} x^{3} \log_{e} x \, dx$$

- **4** (a) Given that $I_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$, prove that $I_n = \left(\frac{n-1}{n}\right) I_{n-2}$ where $n \ge 2$ is an integer.
 - **(b)** Hence evaluate: $\int_0^{\frac{\pi}{2}} \cos^5 x \, dx$

- **5** (a) Show that: $\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$
 - **(b)** Hence evaluate: $\int_0^{\frac{\pi}{6}} \sin^4 x \, dx$

- **6** (a) If $I_n = \int \sec^n x \, dx$ show that: $I_n = \frac{1}{n-1} (\sec^{n-2} x \tan x) + \frac{n-2}{n-1} I_{n-2}$
 - **(b)** Hence evaluate: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^4 x \, dx$

- 8 (a) Given that $I_n = \int_0^1 x^{2n-1} e^{x^2} dx$ for each integer $n \ge 1$, show that: $I_n = \frac{e}{2} (n-1)I_{n-1}$
 - (b) Hence, or otherwise, calculate I_2 .

- **10** (a) Show that: $\int e^{ax} \sin x \, dx = \frac{1}{a^2 + 1} e^{ax} (a \sin x \cos x)$
 - (b) Hence find: (i) $\int e^x \sin x \, dx$ (ii) $\int e^{3x} \sin x \, dx$

11 If
$$I_n = \int_0^x \frac{t^n}{1+t} dt$$
 show that: $I_n + I_{n-1} = \frac{x^n}{n}$