2 Use the result
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 to find:
(a) $f'(-2)$ when $f(x) = x^2$ (b) $f'(-1)$ when $f(x) = x^3$

3 P(1,1) and Q(2,8) are points on the curve $f(x) = x^3$. Indicate whether each statement is correct or incorrect.

(a) Gradient of
$$PQ = 7$$
 (b) $f'(2) = \lim_{x \to 1} \frac{x^3 - 8}{x - 2}$ (c) $f'(1) = \lim_{x \to 1} \frac{x^3 - 1}{x - 1}$ (d) $f'(x) = 3x^2$

5 For the function $f(x) = 2x^2 - 4x$, find the following: (a) $\lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$ (b) $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Interpret your results geometrically.

6 Find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	for the following:		
(a) $f(x) = 4x^2 - 1$		(c)	$f(x) = x^3 - 2x^2$

d) $f(x) = x^3 + 4x + 5$

e) $f(x) = x^4$

You will need to use the expansion $(x + h)^4 = x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4$