- 1 Find the following limits.
- (a) $\lim_{x \to \frac{1}{2}} \frac{1 4x^2}{1 2x}$ (b) $\lim_{x \to 3} \frac{x^3 27}{x 3}$

- 2 Evaluate: (a) $\lim_{h\to 0} \frac{2x^2h + 3h}{h}$ (b) $\lim_{h\to 0} \frac{(2+h)^2 4}{h}$ (c) $\lim_{h\to 0} \frac{(1+h)^3 1}{h}$

3 Find
$$\frac{f(x+h)-f(x)}{h}$$
, $h \ne 0$, for $f(x) = 2x^2 - 3x$.

- 4 For $f(x) = x^2 + 6x + 8$, find:
 - (a) f(2)
- **(b)** f'(2)
- (c) f'(c) (d) the value of c for which f'(c) = -2

5 Find f'(x) for $f(x) = \sqrt{2x - 1}$.

6 Given
$$y = (x^2 - 4)(3x^2 - 2x + 1)^5$$
, find $\frac{dy}{dx}$.

7 Find the derivative of each function.

(a)
$$y = (x-2)^3$$

(b)
$$f(x) = (x^2 + x^3)^5$$

(c)
$$v = \sqrt{25 - t^2}$$

(d)
$$y = (x + x^{-1})^2$$

(b)
$$f(x) = (x^2 + x^3)^5$$
 (c) $v = \sqrt{25 - t^2}$
(e) $g(x) = \frac{1}{(x+4)^2}$ (f) $y = \frac{x-2}{x}$

(f)
$$y = \frac{x - 1}{x}$$

7 Find the derivative of each function.

(j)
$$u = \frac{2m-7}{2m+3}$$

(k)
$$y = \frac{1+x^3}{x^2}$$

(k)
$$y = \frac{1+x^3}{x^2}$$
 (l) $h(t) = (t-3)\sqrt{t-3}$

9	Find the equation of the tangent to the parabola $y = 4x - x^2$ at the point where the gradient is -2 .
10	Find the equation of the tangents to the curve $y = 2x^2(4 - x)$ at the point where the curve intersects the <i>x</i> -axis
10	Find the equation of the tangents to the curve $y = 2x^2(4 - x)$ at the point where the curve intersects the x-axis
10	Find the equation of the tangents to the curve $y = 2x^2(4-x)$ at the point where the curve intersects the <i>x</i> -axis
10	Find the equation of the tangents to the curve $y = 2x^2(4 - x)$ at the point where the curve intersects the <i>x</i> -axis
10	Find the equation of the tangents to the curve $y = 2x^2(4 - x)$ at the point where the curve intersects the <i>x</i> -axis
10	Find the equation of the tangents to the curve $y = 2x^2(4 - x)$ at the point where the curve intersects the <i>x</i> -axis
10	Find the equation of the tangents to the curve $y = 2x^2(4-x)$ at the point where the curve intersects the x -axis
10	Find the equation of the tangents to the curve $y = 2x^2(4 - x)$ at the point where the curve intersects the <i>x</i> -axis
10	Find the equation of the tangents to the curve $y = 2x^2(4 - x)$ at the point where the curve intersects the <i>x</i> -axis

- 12 A particle is moving along the x-axis and is initially at the origin. Its velocity v metres per second at time t seconds is given by $v = \frac{2t}{9+t^2}$.
 - (a) What is the initial velocity of the particle?
 - (b) Find an expression for the acceleration of the particle.
 - (c) When is the acceleration zero?
 - (d) What is the maximum velocity attained by the particle and when does it occur?

1 Differentiate:

(a)
$$e^{x^2} + 2$$

(b)
$$(e^x + x^2)^4$$

(c)
$$e^x + ex$$

5 In statistics, the normal probability density function is given by $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$. Find f'(0).

2 Differentiate (a) $(x^2 + 2x)e^x$ (c) $2^x + 3^x + 4^x$ (e) $(x^2 + 3x)e^{-3x}$