The scalar product (also called the dot product or the inner product) is a way of multiplying two vectors. The result of this multiplication is a scalar quantity (with magnitude but no direction).

The scalar product of two vectors \vec{a} and \vec{b} is written \vec{a} . \vec{b} (read " \vec{a} dot \vec{b} ")

There is also another product operation on vectors, the vector product or cross product, which is written $\vec{a} \times \vec{b}$ (read " \vec{a} cross \vec{b} "). The result of this multiplication is a vector, not a scalar like for the scalar product. The vector product, which is widely used in Physics, is not studied in this course.

If θ is the angle between the positive directions of two vectors a and b, then the scalar product is defined to be $a \cdot b = |a||b| \cos \theta$.

For a straight angle, $\theta = \pi$, so $a \cdot b = -|a||b|$ as $\cos \pi = -1$.

Example 18

Given |a| = 5 and |b| = 6, find the scalar product of a and b, correct to two decimal places, in each of the following.

Solution

(a)
$$a \cdot b = |a||b|\cos\theta$$

= $5 \times 6 \times \cos 40^\circ$
= 22.98

(b)
$$\underline{a} \bullet \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$$

= $5 \times 6 \times \cos 140^{\circ}$

Special cases of the scalar product

Parallel vectors

If a and b are parallel vectors in the same direction, then $a \cdot b = |a||b| \cos 0^{\circ}$.

As $\cos 0^{\circ} = 1$, this means: $a \cdot b = |a||b|$

If a and b are parallel vectors but in opposite directions, then: $a \cdot b = |a| |b| \cos \pi$

Equal vectors

If a = b, then $\theta = 0$ (just as for any parallel vectors), so the scalar product is the magnitude squared:

$$\underline{a} \bullet \underline{a} = |\underline{a}| |\underline{a}| \cos 0^{\circ} \qquad \underline{\underline{a}} \\
= |\underline{a}| |\underline{a}| \qquad \underline{\underline{b}} \\
= |\underline{a}|^{2}$$

Perpendicular vectors

Two vectors are said to be perpendicular or orthogonal if the angle between their directions is a right angle (90°).

If \underline{a} and \underline{b} are perpendicular vectors, then: $\underline{a} \bullet \underline{b} = |\underline{a}| |\underline{b}| \cos \frac{\pi}{2}$ $= |\underline{a}| |\underline{b}| \times 0$ = 0

Also, if $\underline{a} \bullet \underline{b} = |\underline{a}| |\underline{b}| \cos \theta = 0$, then $|\underline{a}| = 0$ or $|\underline{b}| = 0$ or $\theta = \frac{\pi}{2}$.

This leads to an important property of perpendicular vectors: if the scalar product of two non-zero vectors is zero, then the vectors are perpendicular.

If $a \cdot b = 0$ for non-zero vectors a and b, then a and b are perpendicular.

An important property of the unit vectors \underline{i} and \underline{j} is that they are perpendicular, so that $\underline{i} \bullet \underline{j} = \underline{j} \bullet \underline{i} = 0$. Also, using the property of parallel vectors: $\underline{i} \bullet \underline{i} = \underline{j} \bullet \underline{j} = 1$.

Scalar product for vectors in component form

In component form, for $\underline{a} = x_1 \underline{i} + y_1 \underline{j}$ and $\underline{b} = x_2 \underline{i} + y_2 \underline{j}$, the scalar product is:

$$\underline{a} \bullet \underline{b} = (x_1 \underline{i} + y_1 \underline{j}) \bullet (x_2 \underline{i} + y_2 \underline{j})$$

$$= (x_1 x_2) (\underline{i} \bullet \underline{i}) + (x_1 y_2) (\underline{i} \bullet \underline{j}) + (y_1 x_2) (\underline{j} \bullet \underline{i}) + (y_1 y_2) (\underline{j} \bullet \underline{j})$$

$$= x_1 x_2 + y_1 y_2 \text{ as } \underline{i} \bullet \underline{i} = \underline{j} \bullet \underline{j} = 1 \text{ and } \underline{i} \bullet \underline{j} = \underline{j} \bullet \underline{i} = 0$$

Consider two vectors, $\underline{a} = x_1 \underline{i} + y_1 \underline{j}$ making an angle θ_1 with the x-axis and $\underline{b} = x_2 \underline{i} + y_1 \underline{j}$ making an angle θ_2 with the x-axis. The angle between the vectors is $\theta = \theta_1 - \theta_2$.

$$\begin{aligned}
a \bullet b &= |a||b|\cos\theta \\
&= |a||b|\cos(\theta_1 - \theta_2) \\
&= |a||b|(\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2) \\
&= |a|\cos\theta_1|b|\cos\theta_2 + |a|\sin\theta_1|b|\sin\theta_2 \\
&= x_1x_2 + y_1y_2
\end{aligned}$$

For $\underline{a} = x_1 \underline{i} + y_1 \underline{j}$ and $\underline{b} = x_2 \underline{i} + y_2 \underline{j}$ the scalar product of the vectors in component form is $\underline{a} \bullet \underline{b} = x_1 x_2 + y_1 y_2$.

This means there are two basic expressions for the scalar product: $\underline{a} \bullet \underline{b} = |\underline{a}| |\underline{b}| \cos \theta = x_1 x_2 + y_1 y_2$.

Example 19

Find the scalar product $\underline{a} \bullet \underline{b}$, given $\underline{a} = 2\underline{i} + 5\underline{j}$ and $\underline{b} = -3\underline{i} + 4\underline{j}$.

$$\underline{a} \bullet \underline{b} = (2\underline{i} + 5\underline{j}) \bullet (-3\underline{i} + 4\underline{j})$$

Multiply the coefficients of the like components and sum together: $\underline{a} \bullet \underline{b} = 2 \times (-3) + 5 \times 4$

Geometric interpretation of the scalar product

Three vectors form the triangle $\triangle AOB$ and the length of each side is the magnitude of the vector forming that side.

The cosine rule states that $|\underline{a} - \underline{b}|^2 = |\underline{a}|^2 + |\underline{b}|^2 - 2|\underline{a}||\underline{b}|\cos\theta$.

Using the properties of the dot product, the left-hand side can be written as:

$$|\underline{a} - \underline{b}|^2 = (\underline{a} - \underline{b}) \bullet (\underline{a} - \underline{b})$$

$$= \underline{a} \bullet \underline{a} - \underline{a} \bullet \underline{b} - \underline{b} \bullet \underline{a} + \underline{b} \bullet \underline{b}$$

$$= |\underline{a}|^2 - 2\underline{a} \bullet \underline{b} + |\underline{b}|^2$$

Rewriting the cosine rule:

$$\begin{aligned} |\underline{a} - \underline{b}|^2 &= |\underline{a}|^2 + |\underline{b}|^2 - 2|\underline{a}||\underline{b}|\cos\theta \\ |\underline{a}|^2 - 2\underline{a} \bullet \underline{b} + |\underline{b}|^2 &= |\underline{a}|^2 + |\underline{b}|^2 - 2|\underline{a}||\underline{b}|\cos\theta \\ -2\underline{a} \bullet \underline{b} &= -2|\underline{a}||\underline{b}|\cos\theta \\ \underline{a} \bullet \underline{b} &= |\underline{a}||\underline{b}|\cos\theta \end{aligned}$$

Algebraic properties of the scalar product

The scalar product has the following algebraic properties.

- 1 The commutative law: $\underline{a} \bullet \underline{b} = \underline{b} \bullet \underline{a}$ This property follows immediately from the definition $a \bullet b = |a||b|\cos\theta$, since |a||b| = |b||a|.
- The associative law, including multiplication by a scalar:
 (ma) b = m(a b), where m is a real number.
 This property also follows directly from the definition, although it is necessary to distinguish the cases m < 0 and m > 0.
- 3 The distributive law:

$$a \bullet (b+c) = a \bullet b + a \bullet c$$

The distributive law can be verified using the geometric interpretation of the scalar product and assuming that the projections of \underline{b} and \underline{c} on \underline{a} are both positive.

From the diagram:
$$\underline{a} \bullet (\underline{b} + \underline{c}) = |\underline{a}| |\underline{b} + \underline{c}| \cos \theta$$

= $|\underline{a}| \times |\overline{ON}|$ as $|\underline{b} + \underline{c}| \cos \theta = |\overline{ON}|$

Also:
$$\underline{a} \bullet \underline{b} + \underline{a} \bullet \underline{c} = |\underline{a}| \times |\overline{OM}| + |\underline{a}| \times |\overline{MN}|$$

$$= |\underline{a}| \times |\overline{ON}|$$

$$= \underline{a} \bullet (\underline{b} + \underline{c})$$

4 An important result involving the distributive law is $(\underline{a} + \underline{b})(\underline{a} - \underline{b}) = |\underline{a}|^2 - |\underline{b}|^2$:

$$(\underline{a} + \underline{b}) \bullet (\underline{a} - \underline{b}) = \underline{a} \bullet \underline{a} - \underline{a} \bullet \underline{b} + \underline{b} \bullet \underline{a} - \underline{b} \bullet \underline{b}$$

$$= \underline{a} \bullet \underline{a} - \underline{b} \bullet \underline{b} \text{ since } \underline{a} \bullet \underline{b} = \underline{b} \bullet \underline{a}$$

$$= |\underline{a}|^2 - |\underline{b}|^2$$

Finding the angle between two vectors

The scalar product can be used to find the angle between two vectors. Let θ be the angle between the directions of vectors a and b as shown.

$$a \cdot b = |a| |b| \cos \theta$$

So:
$$\cos \theta = \frac{a \cdot b}{|a||b|}$$

$$\therefore \theta = \cos^{-1} \left(\frac{\underline{a} \cdot \underline{b}}{|\underline{a}| |\underline{b}|} \right)$$

Note: It is usual to consider θ to be the smaller of the two possible angles between the two vectors. Either way, the smaller angle and the larger (reflex) angle will be equivalent for any scalar product, because $\cos(\theta) = \cos(2\pi - \theta)$.

Example 20

Find the angle in degrees, correct to two decimal places, between vectors $\underline{a} = 3\underline{i} - 2\underline{j}$ and $\underline{b} = 4\underline{i} + \underline{j}$.

Solution

Scalar product of the vectors: $\underline{a} \bullet \underline{b} : \underline{a} \bullet \underline{b} = (3\underline{i} - 2\underline{j})(4\underline{i} + \underline{j})$

Magnitudes of the vectors: $|\underline{a}| = \sqrt{3^2 + (-2)^2}$ $|\underline{b}| = \sqrt{4^2 + 1^2}$

$$\left| b \right| = \sqrt{4^2 + 1^2}$$

Substitute into the rule
$$\theta = \cos^{-1}\left(\frac{\underline{a} \bullet \underline{b}}{|\underline{a}||\underline{b}|}\right)$$
 and simplify: $\theta = \cos^{-1}\left(\frac{\underline{a} \bullet \underline{b}}{|\underline{a}||\underline{b}|}\right)$

$$=\cos^{-1}\left(\frac{10}{\sqrt{13}\times\sqrt{17}}\right)$$

= 47.73° (correct to two decimal places)